Amino acid transport through the placenta: an experimental and modelling investigation

通过胎盘的氨基酸转运:实验和建模研究

基本信息

  • 批准号:
    BB/I011315/1
  • 负责人:
  • 金额:
    $ 43.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

While in the womb the baby obtains all the nutrients it requires for growth and development from the placenta. This organ transfers nutrients from maternal blood to the baby's blood. If the placenta does not transfer enough nutrients, the fetus will not be able to grow adequately and may be born too small. Babies who are born too small are more likely to develop health problems, both in early life and in adulthood. To understand the normal processes by which babies grow in the womb and to understand why this process is sometimes disturbed, we need to fully appreciate how nutrients are transported across the placenta. Understanding normal placental function will allow us to define what might go wrong when growth of the baby becomes impaired and how this might be prevented or treated at an early stage. In this project we will develop a computer model of how the placenta functions which can be used to better understand how the placenta works normally and also how it can go wrong in a difficult pregnancy. We are particularly interested in the placental transfer of amino acids. These are the building blocks of proteins which form muscles and the cellular 'machinery' essential for life. Thus, amino acids are an important class of nutrients, and their placental transfer is essential for optimal growth of the baby in the womb. In pregnancies where the baby was born small, placental amino acid transport has been shown to be lower than in babies of normal birth weight. Placental amino acid transfer is a complex process which is dependent on (i) amino acid transporters - (carriers) which take nutrients from maternal blood and release them into fetal blood, (ii) on blood flow through the placenta, (iii) on the internal structure of the placenta, and (iv) on the levels of amino acids in maternal and fetal blood as well as inside the cells which make up the placenta. The way these factors affect amino acid transfer cannot be understood in isolation as there are complicated interdependent interactions between them. Therefore, developing a computer model of these complex interactions will allow us to study how the placenta works as an integrated system. We have already designed a simple model that simulates the function of amino acid transporters in the human placenta and which can predict the transport of up to 3 amino acids at any one time. We have tested this model by comparing it to what we observe experimentally in placentas collected immediately after birth. These tests show that the model can convincingly reproduce experimental data, but we now need to expand our system to accurately simulate the simultaneous transport of the entire set of 20 amino acids. Such a model must incorporate other influences on placental transport such as the internal structure and blood flow patterns of the placenta. Ultimately, a well validated virtual placental amino acid transport model will help to explain how the components of the normal placenta function to transport amino acids to the baby and sustain optimal growth. It will identify the most important factors which affect placental amino acid transport and will allow future studies to be focused on such factors that are likely to have the greatest impact, leading to the development of effective strategies to ensure babies grow optimally in the womb. These strategies may include algorithms to predict how mothers metabolic state may affect placental amino acid transport (e.g. in maternal diabetes, teenage pregnancy) and to develop personalised interventions or using the model to identify key targets for pharmacological interventions. Ultimately we intend that this work will contribute to the development of a fully-fledged Virtual Placenta, one that does not just model amino acid transport but all the placental functions.
在子宫内,婴儿从胎盘获得生长和发育所需的所有营养。这个器官将母体血液中的营养物质转移到婴儿的血液中。如果胎盘不能转移足够的营养,胎儿将无法充分生长,可能会出生太小。出生时太小的婴儿更有可能在早期和成年后出现健康问题。为了了解婴儿在子宫内生长的正常过程,以及为什么这个过程有时会受到干扰,我们需要充分了解营养物质如何通过胎盘运输。了解正常的胎盘功能将使我们能够确定当婴儿生长受损时可能出现的问题,以及如何在早期预防或治疗。在这个项目中,我们将开发一个胎盘功能的计算机模型,它可以用来更好地了解胎盘如何正常工作,以及它如何在困难的怀孕中出错。我们特别感兴趣的是氨基酸的胎盘转移。这些是蛋白质的组成部分,蛋白质形成肌肉和生命所必需的细胞“机器”。因此,氨基酸是一类重要的营养素,它们的胎盘转移对于婴儿在子宫内的最佳生长至关重要。在婴儿出生时很小的妊娠中,胎盘氨基酸运输已被证明低于正常出生体重的婴儿。胎盘氨基酸转移是一个复杂的过程,取决于(i)氨基酸转运蛋白(载体),其从母体血液中摄取营养物质并将其释放到胎儿血液中,(ii)通过胎盘的血流,(iii)胎盘的内部结构,以及(iv)母体和胎儿血液以及构成胎盘的细胞内的氨基酸水平。这些因素影响氨基酸转移的方式不能孤立地理解,因为它们之间存在复杂的相互依赖的相互作用。因此,开发这些复杂相互作用的计算机模型将使我们能够研究胎盘作为一个集成系统如何工作。我们已经设计了一个简单的模型,它模拟了人体胎盘中氨基酸转运蛋白的功能,并且可以预测在任何一个时间最多3种氨基酸的转运。我们通过将其与我们在出生后立即收集的胎盘中观察到的实验结果进行比较来测试该模型。这些测试表明,该模型可以令人信服地重现实验数据,但我们现在需要扩展我们的系统,以准确地模拟整个20种氨基酸的同时运输。这样的模型必须包括对胎盘运输的其他影响,例如胎盘的内部结构和血流模式。最终,一个经过充分验证的虚拟胎盘氨基酸转运模型将有助于解释正常胎盘的组成部分如何向婴儿转运氨基酸并维持最佳生长。它将确定影响胎盘氨基酸转运的最重要因素,并将使未来的研究集中在可能产生最大影响的因素上,从而制定有效的策略,以确保婴儿在子宫内最佳地生长。这些策略可能包括预测母亲代谢状态如何影响胎盘氨基酸转运的算法(例如,在母亲糖尿病,少女怀孕中),并制定个性化干预措施或使用模型来确定药物干预的关键目标。最终,我们希望这项工作将有助于开发一个完全成熟的虚拟胎盘,它不仅模拟氨基酸转运,还模拟胎盘的所有功能。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estrone sulphate uptake by the microvillous membrane of placental syncytiotrophoblast is coupled to glutamate efflux.
Glutamate cycling may drive organic anion transport on the basal membrane of human placental syncytiotrophoblast.
谷氨酸循环可能驱动有机阴离子在人胎盘合成细胞基底膜上的转运。
  • DOI:
    10.1113/jp270743
  • 发表时间:
    2015-10-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lofthouse EM;Brooks S;Cleal JK;Hanson MA;Poore KR;O'Kelly IM;Lewis RM
  • 通讯作者:
    Lewis RM
Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms.
Computational modelling of placental amino acid transfer as an integrated system.
  • DOI:
    10.1016/j.bbamem.2016.03.028
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Panitchob N;Widdows KL;Crocker IP;Johnstone ED;Please CP;Sibley CP;Glazier JD;Lewis RM;Sengers BG
  • 通讯作者:
    Sengers BG
Phenylalanine transfer across the isolated perfused human placenta: an experimental and modeling investigation.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rohan Lewis其他文献

Comparative placentation from a three-dimensional and multiscale structural perspective
  • DOI:
    10.1016/j.placenta.2023.07.044
  • 发表时间:
    2023-09-07
  • 期刊:
  • 影响因子:
  • 作者:
    Davis Laundon;Neil Gostling;Bram Sengers;Pascale Chavatte-Palmer;Rohan Lewis
  • 通讯作者:
    Rohan Lewis
The role of placental OATP4A1 in obstetric cholestasis
  • DOI:
    10.1016/j.placenta.2017.07.095
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emma Lofthouse;Bram Sengers;Rohan Lewis
  • 通讯作者:
    Rohan Lewis
Human placental metabolism of vitamin D and transfer to maternal and fetal circulations
  • DOI:
    10.1016/j.placenta.2019.06.359
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brogan Ashley;Emma Lofthouse;Felicity Hey;Kerry Jones;Nicholas Harvey;Rohan Lewis;Jane Cleal
  • 通讯作者:
    Jane Cleal
How to design a perfusion experiment to obtain the maximum benefit from mathematical modelling
  • DOI:
    10.1016/j.placenta.2023.07.090
  • 发表时间:
    2023-09-07
  • 期刊:
  • 影响因子:
  • 作者:
    Rohan Lewis;Bram Sengers
  • 通讯作者:
    Bram Sengers
Correlative three-dimensional X-ray histology (3D-XRH) as a tool for quantifying mammalian placental structure
  • DOI:
    10.1016/j.placenta.2024.07.084
  • 发表时间:
    2024-09-02
  • 期刊:
  • 影响因子:
  • 作者:
    Davis Laundon;Thomas Lane;Orestis Katsamenis;Jeanette Norman;Lois Brewer;Shelley Harris;Philip Basford;Justine Shotton;Danielle Free;Georgina Constable-Dakeyne;Neil Gostling;Pascale Chavatte-Palmer;Rohan Lewis
  • 通讯作者:
    Rohan Lewis

Rohan Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rohan Lewis', 18)}}的其他基金

Convergent evolution of placental villi in primates and ungulates: Are some placentas more efficient than others?
灵长类动物和有蹄类动物胎盘绒毛的趋同进化:某些胎盘是否比其他胎盘更有效?
  • 批准号:
    BB/Y005953/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Research Grant
The placental barrier and the fetal exposome: exploring the mechanisms underlying fetal exposures
胎盘屏障和胎儿暴露组:探索胎儿暴露的机制
  • 批准号:
    BB/X01603X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Research Grant
Coupling of organic anion transport to the glutamate gradient by OATs and OATPs
OAT 和 OATP 耦合有机阴离子转运至谷氨酸梯度
  • 批准号:
    BB/L020823/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Research Grant

相似国自然基金

基于F/IGF1R/PKC ζ 通路研究夏枯草中 Mesonolic acid B抑制RSV感染性肺炎的 作用机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
脂肪酸α-dimorphecolicacid抑制NF-κB信号介导的小胶质细胞炎症缓解多发性硬化的免疫代谢调控机制研究
  • 批准号:
    QN25H310018
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Quinic acid通过抑制肠道菌群代谢产物脱氧胆酸调节巨噬细胞M1向M2极化改善动脉粥样硬化的机制研究
  • 批准号:
    2025JJ80556
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
巨噬细胞来源代谢物suberic acid抑制蜕膜早衰防治早产的作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
色氨酸代谢产物Kynurenic Acid在脓毒症肠损伤中的诊断价值及其机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    5.0 万元
  • 项目类别:
    省市级项目
肠道菌群介导的脱氧胆酸激活S1PR2/NLRP3/IL-1β通路在炎症性肠病合并艰难梭菌感染中的致病机制研究
  • 批准号:
    82372306
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
α-酮戊二酸调控ACMSD介导犬尿氨酸通路代谢重编程在年龄相关性听力损失中的作用及机制研究
  • 批准号:
    82371150
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
  • 批准号:
    82370902
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
  • 批准号:
    82371798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
  • 批准号:
    82370790
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

A systems biology approach to elucidating mechanisms underlying amino acid toxicities
阐明氨基酸毒性机制的系统生物学方法
  • 批准号:
    10680272
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
Amino acid mimicry: Insights into glyphosate transport and toxicity to mitochondria
氨基酸拟态:深入了解草甘膦转运和线粒体毒性
  • 批准号:
    10573869
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
Investigating the Lysosome and Plasma Membrane Systems in Protecting Cells Against Age-induced Amino Acid Toxicity
研究溶酶体和质膜系统保护细胞免受年龄诱导的氨基酸毒性的作用
  • 批准号:
    10680314
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
Retinal amino acid transport in health and disease
健康和疾病中的视网膜氨基酸转运
  • 批准号:
    10770064
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
Determinants of amino acid transporter oligomerization in membranes
膜中氨基酸转运蛋白寡聚的决定因素
  • 批准号:
    10725968
  • 财政年份:
    2023
  • 资助金额:
    $ 43.78万
  • 项目类别:
Amino acid transporters that transport mugineic acids-iron complexes and their roles in mammals
运输麦根酸-铁复合物的氨基酸转运蛋白及其在哺乳动物中的作用
  • 批准号:
    22K05342
  • 财政年份:
    2022
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The role of host amino acid metabolism in behavioral changes during latent toxoplasmosis
宿主氨基酸代谢在潜伏性弓形体病行为变化中的作用
  • 批准号:
    10558212
  • 财政年份:
    2022
  • 资助金额:
    $ 43.78万
  • 项目类别:
Interrogating amino acid transport and organelle exchange
研究氨基酸转运和细胞器交换
  • 批准号:
    RGPIN-2021-02831
  • 财政年份:
    2022
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Discovery Grants Program - Individual
The amino acid metabolism and transport mechanisms governing the translocation of nitrogen in rice are under variable nitrogen conditions.
水稻中控制氮转运的氨基酸代谢和运输机制处于可变的氮条件下。
  • 批准号:
    22K05365
  • 财政年份:
    2022
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interrogating amino acid transport and organelle exchange
研究氨基酸转运和细胞器交换
  • 批准号:
    RGPIN-2021-02831
  • 财政年份:
    2021
  • 资助金额:
    $ 43.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了