Monitoring the gut microbiome via AI and omics: a new approach to detect infection and AMR and to support novel therapeutics in broiler precision farm
通过人工智能和组学监测肠道微生物组:一种检测感染和抗菌素耐药性并支持肉鸡精准农场新疗法的新方法
基本信息
- 批准号:BB/X017370/1
- 负责人:
- 金额:$ 103.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The production of poultry for meat consumption (broilers) is rising globally, the UK being amongst the countries with the highest production. Poultry meat consumption pro capita in the UK is twice more than pork and almost three times more than beef, and growing. Poultry endemic diseases due to bacteria, viruses and parasites are frowned upon, as they can cause considerable economic losses. To save production, the use of broad-spectrum antibiotics at any sign of incipient disease is widespread, even when the source of the disease has not been pinpointed yet (let alone the bacterial origin). The act of administering antibiotics increases the risk of the pathogen developing resistance (antimicrobial resistance - AMR), making it more difficult to fight that pathogen in the future. To reduce the use of broad-spectrum antibiotics, solutions are urgently needed for farms to efficiently monitor livestock, identify infections and the source of infection as soon as possible, and administer more targeted therapeutics.The project aims at developing new surveillance solutions specifically designed for use by the broiler industry. These solutions are designed to be turn-key: operators will periodically upload data acquired within the farm to a cloud-based service where the state of production will be assessed automatically. Warnings and advice will be sent back to the farmers via apps on smartphones/tablets, in case infections, co-infection or increased likelihood of AMR are detected. The project will cover the main pathogens of bacterial, viral and parasitic origin affecting UK broiler farming, as well as AMR to the main classes of antibiotics routinely administered in the country.How will surveillance solutions achieve their predictions, and how will we decide what data to upload? At the core of the project there is a data mining method powered by machine learning, recently perfected by the applicants. The method allows to consider a large amount of heterogeneous information collected from the farm, including historical data of previous infections/AMR events, and allows the development of mathematical models that, based on observing specific patterns in the collected information, estimate the likelihood of infection or resistance manifestations. The method also allows to isolate what farm variables are the most important for each type of prediction (e.g. a specific infection, or AMR trait): these variables are called "biomarkers". Initially, we will consider many variables: sensor data on temperature, humidity, illumination and air composition in the barn, microbiological analysis of samples from feathers, soil, barn floors, water, feed, and operator boots. An important role is reserved to data originating from the analysis of the gut microbiome, i.e. the microbial species living in the broiler gut, whose abundances, genetic traits and metabolic functions, have been proven implicated in numerous aspects of infection and resistance. Co-presence of viruses and parasites will be considered. Thanks to machine learning, for the first time it will be possible to prune such a multitude of variables, isolating the most relevant (biomarkers) to be used in the final prediction models. These models will be turned into software applications running remotely as cloud services. Users (farmers) will periodically upload information (biomarker values) as required, allowing for the models to replicate exactly at any time the state of the real production (models will become "digital twins", being virtual replicas of the real system). Farmers will then receive messages via web-based apps, reporting warnings, alarms, or suggested therapies. The methods for identifying the important variables and developing prediction models have been successful in pilot studies, leading to the identification of promising biomarkers documented in publications. The projected impact of the project on surveillance in broiler farming is expected to be unprecedented.
全球肉类消费家禽(肉鸡)的产量正在上升,英国是产量最高的国家之一。在英国,禽肉的人均消费量是猪肉的两倍,几乎是牛肉的三倍,而且还在增长。由细菌、病毒和寄生虫引起的家禽地方病是不受欢迎的,因为它们会造成相当大的经济损失。为了节省产量,在任何疾病的初期迹象中都广泛使用广谱抗生素,即使疾病的来源尚未确定(更不用说细菌来源)。施用抗生素的行为增加了病原体产生耐药性(抗菌素耐药性- AMR)的风险,使其在未来更难以对抗该病原体。为了减少广谱抗生素的使用,养殖场迫切需要解决方案来有效地监测牲畜,尽快识别感染和感染源,并给予更有针对性的治疗。该项目旨在开发专为肉鸡行业设计的新的监测解决方案。这些解决方案旨在实现交钥匙:操作员将定期将农场内获取的数据上传到基于云的服务,在该服务中将自动评估生产状态。如果检测到感染、合并感染或AMR可能性增加,将通过智能手机/平板电脑上的应用程序向农民发送警报和建议。该项目将涵盖影响英国肉鸡养殖的主要细菌、病毒和寄生虫病原体,以及该国常规使用的主要抗生素类别的AMR。监测解决方案如何实现其预测,我们如何决定上传哪些数据?该项目的核心是一种由机器学习驱动的数据挖掘方法,最近由申请人完善。该方法允许考虑从农场收集的大量异质信息,包括先前感染/AMR事件的历史数据,并允许开发数学模型,该模型基于观察收集的信息中的特定模式,估计感染或耐药性表现的可能性。该方法还允许分离对于每种类型的预测(例如特定感染或AMR性状)最重要的农场变量:这些变量被称为“生物标志物”。最初,我们将考虑许多变量:关于畜舍中温度、湿度、照明和空气成分的传感器数据,对羽毛、土壤、畜舍地板、水、饲料和操作员靴子样本的微生物分析。来自肠道微生物组分析的数据保留了重要作用,即生活在肉鸡肠道中的微生物物种,其丰度,遗传性状和代谢功能已被证明与感染和抗性的许多方面有关。将考虑病毒和寄生虫共存。由于机器学习,第一次有可能修剪如此多的变量,分离出最相关的(生物标志物)用于最终的预测模型。这些模型将转变为作为云服务远程运行的软件应用程序。用户(农民)将根据需要定期上传信息(生物标志物值),使模型能够随时准确复制真实的生产状态(模型将成为“数字双胞胎”,成为真实的系统的虚拟复制品)。然后,农民将通过基于网络的应用程序接收消息,报告警告,警报或建议的治疗方法。用于识别重要变量和开发预测模型的方法在试点研究中取得了成功,从而识别了出版物中记录的有希望的生物标志物。预计该项目对肉鸡养殖监测的影响将是前所未有的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tania Dottorini其他文献
A genome-wide association study identifies genetic variants associated with hip pain in the UK Biobank cohort (N = 221,127)
一项全基因组关联研究在英国生物银行队列(N = 221,127)中确定了与髋部疼痛相关的基因变体
- DOI:
10.1038/s41598-025-85871-w - 发表时间:
2025-01-22 - 期刊:
- 影响因子:3.900
- 作者:
Qi Pan;Yiwen Tao;Tengda Cai;Abi Veluchamy;Harry L. Hebert;Peixi Zhu;Mainul Haque;Tania Dottorini;Lesley A. Colvin;Blair H. Smith;Weihua Meng - 通讯作者:
Weihua Meng
Tania Dottorini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tania Dottorini', 18)}}的其他基金
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 103.31万 - 项目类别:
Research Grant
Tackling the pandemic of antibiotic-resistant infections: An artificial intelligence approach to new druggable therapeutic targets and drug discovery
应对抗生素耐药性感染的流行:利用人工智能方法实现新的药物治疗靶点和药物发现
- 批准号:
MR/X009246/1 - 财政年份:2023
- 资助金额:
$ 103.31万 - 项目类别:
Research Grant
Fighting Infection and AMR in broiler farming: AI, omics and smart sensing for diagnostics, treatment selection and gut microbiome improvement
肉鸡养殖中抗击感染和抗菌素耐药性:用于诊断、治疗选择和肠道微生物组改善的人工智能、组学和智能传感
- 批准号:
BB/W020424/1 - 财政年份:2022
- 资助金额:
$ 103.31万 - 项目类别:
Research Grant
相似国自然基金
基于多组学探讨“清热祛湿”法治疗溃疡性结肠炎的机制
- 批准号:JCZRLH202500133
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肠道微生物通过NLRP3/IL-1β通路介导血管内皮损伤在川崎病及其冠状动脉病变中的作用机制研究
- 批准号:JCZRLH202500452
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
联合批量和单细胞转录组探究畲药柳叶蜡梅缓解肠道衰老的物质基础及药效机制
- 批准号:LSSZ25H280001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于肠道细菌组和真菌组构建帕金森病预测模型的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于肠道菌群微生物囊泡的房颤发病相关性临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
粪菌移植提高对虾抵御弧菌侵染的肠道微生物机制研究
- 批准号:MS25C030010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肠道菌群通过生长分化因子15对抗代谢适应和体重反弹的作用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
辣椒素介导的肠道菌群重塑对糖代谢网络调控的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
茶渣膳食纤维的胃肠消化吸收规律及其对肠道炎症影响机制研究
- 批准号:JCZRLH202500061
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
花生衣原花青素与肠道菌群互作调控胆固醇代谢的分子机制探究
- 批准号:JCZRLH202500067
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 103.31万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 103.31万 - 项目类别:
Studentship
BACMETH: Bacterial methylation of the human gut microbiome in response to diet for improvement of cardiometabolic health
BACMETH:人类肠道微生物组的细菌甲基化响应饮食以改善心脏代谢健康
- 批准号:
EP/Y023765/1 - 财政年份:2024
- 资助金额:
$ 103.31万 - 项目类别:
Research Grant
SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
- 批准号:
2314685 - 财政年份:2024
- 资助金额:
$ 103.31万 - 项目类别:
Cooperative Agreement
Metabolite Control of Microbiome-Microglia Communication in Inflammatory Bowel Disease
炎症性肠病微生物组-小胶质细胞通讯的代谢控制
- 批准号:
478807 - 财政年份:2023
- 资助金额:
$ 103.31万 - 项目类别:
Operating Grants
Non-nutritive sweetener consumption during pregnancy and child body mass index: can postnatal fibre consumption mitigate potential risks?
怀孕期间的非营养性甜味剂消费和儿童体重指数:产后纤维消费可以减轻潜在风险吗?
- 批准号:
488069 - 财政年份:2023
- 资助金额:
$ 103.31万 - 项目类别:
Operating Grants
Cannabis exposure in utero: impact on the developmental programming of the gut-brain axis
子宫内大麻暴露:对肠脑轴发育编程的影响
- 批准号:
479332 - 财政年份:2023
- 资助金额:
$ 103.31万 - 项目类别:
Operating Grants
Early life determinants of childhood adiposity, appetite regulation, and obesogenic dietary behaviours.
儿童肥胖、食欲调节和肥胖饮食行为的早期决定因素。
- 批准号:
478850 - 财政年份:2023
- 资助金额:
$ 103.31万 - 项目类别:
Operating Grants
The role of diet, as mediated by the gut microbiome, on childhood arthritis disease activity: a feasibility intervention study.
肠道微生物组介导的饮食对儿童关节炎疾病活动的作用:一项可行性干预研究。
- 批准号:
489316 - 财政年份:2023
- 资助金额:
$ 103.31万 - 项目类别:
Operating Grants