Tackling the pandemic of antibiotic-resistant infections: An artificial intelligence approach to new druggable therapeutic targets and drug discovery

应对抗生素耐药性感染的流行:利用人工智能方法实现新的药物治疗靶点和药物发现

基本信息

  • 批准号:
    MR/X009246/1
  • 负责人:
  • 金额:
    $ 171.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

It is difficult to imagine life before antibiotics were discovered. Infections such as tuberculosis, pneumonia and whooping cough were common killers - and if minor wounds and burns became infected they were fatal. The use of antibiotics to control bacterial infections is perhaps the most important achievement of modern medicine. However, we have failed to keep pace with microbes becoming increasingly resistant to available treatments. The Covid-19 pandemic exemplifies the threat to human health of an infection without an effective treatment. Antibiotic-resistant infections are already another global pandemic claiming almost 5 million deaths per year globally. Of particular concern are the infections caused by Klebsiella pneumoniae, globally, the third leading pathogen associated with deaths (250 000) attributed to any antibiotic-resistant infection. The increasing isolation of strains resistant to "last resort" antimicrobials has significantly narrowed, or in some settings completely removed, the therapeutic options. This is particularly alarming in low and middle-income countries. Unfortunately, new classes of drugs are not being invented and resistance continues to spread inexorably. The stakes are high and we might be entering into a pre-antibiotic era. Public Health England has calculated that the lack of effective antibiotics will render more than the three million operations and cancer treatments life-threatening, and more than 90,000 people are estimated to die in the UK over the next 30 years due to antibiotic-resistant infections.The golden era in antibiotic drug discovery leveraged the antibacterial products produced by soil microorganisms but this approach became exhausted after 20 years of systematic screening. Researchers have mined different sources of natural products such as marine environments, plants, and even the community of harmless microbes inhabiting our gut with encouraging results. Yet, none of the compounds isolated have entered into drug development. A better understanding of the means used by microbes to resist antibiotics may result in the discovery of hitherto unknown targets suitable to develop new drugs against. In this research, we will use artificial intelligence to identify new potential druggable targets from K. pneumoniae that when blocked may render the microbe susceptible to antibiotics and perhaps may even facilitate the clearance of Klebsiella by our defenses. We will train supervised learners to go through data we will generate in the laboratory and to read the genome of the microbe to find these targets that researchers have overlooked. Next, and utilizing other learners, we will identify drugs that can block these targets. Specifically, we will search drugs already approved for use in humans but used for purposes unrelated to antimicrobial activity. We will carry out experiments in the laboratory to confirm the effect of these drugs. From the drug discovery point of view, our approach significantly shortcuts the drug development process hence allowing a potential fast-track transition from the basic research to clinical development. We envision that our results will encourage other academics as well as pharmaceutical companies to follow this new avenue of research to tackle the problem of the lack of therapies for microbes resistant to antibiotics. To facilitate this, we will make freely available our protocols, models and data.
很难想象抗生素被发现之前的生活。肺结核、肺炎和百日咳等感染是常见的杀手--如果轻微的伤口和烧伤感染,它们是致命的。使用抗生素来控制细菌感染可能是现代医学最重要的成就。然而,我们未能跟上微生物对现有治疗方法越来越耐药的步伐。2019冠状病毒病大流行加剧了没有有效治疗的感染对人类健康的威胁。抗生素耐药性感染已经是另一种全球大流行病,每年在全球造成近500万人死亡。特别值得关注的是肺炎克雷伯氏菌引起的感染,在全球范围内,这是与任何耐药性感染引起的死亡(250 000例)相关的第三大病原体。对“最后手段”抗菌药物耐药的菌株越来越多地被分离出来,这大大缩小了治疗选择,或者在某些情况下完全消除了治疗选择。这在低收入和中等收入国家尤其令人震惊。不幸的是,新的药物类别没有被发明出来,抗药性继续无情地蔓延。风险很高,我们可能正在进入一个前抗生素时代。英国公共卫生部计算,缺乏有效的抗生素将使300多万例手术和癌症治疗危及生命,90多万例,据估计,在未来30年内,英国将有2000人死于抗生素-抗生素药物发现的黄金时代利用了土壤微生物产生的抗菌产品,但这种方法在20年后就枯竭了。多年的系统筛查。研究人员已经挖掘了不同来源的天然产品,如海洋环境,植物,甚至居住在我们肠道中的无害微生物群落,结果令人鼓舞。然而,没有一种分离的化合物进入药物开发。更好地了解微生物抵抗抗生素的方法可能会发现迄今为止未知的目标,适合开发新药。在这项研究中,我们将使用人工智能来识别K.当被阻断时,可能会使微生物对抗生素敏感,甚至可能有助于我们的防御系统清除克雷伯氏菌。我们将训练有监督的学习者浏览我们将在实验室中生成的数据,并阅读微生物的基因组,以找到研究人员忽略的目标。接下来,利用其他学习者,我们将确定可以阻止这些目标的药物。具体来说,我们将搜索已经批准用于人类但用于与抗菌活性无关的目的的药物。我们将在实验室进行实验以证实这些药物的效果。从药物发现的角度来看,我们的方法显着缩短了药物开发过程,从而允许从基础研究到临床开发的潜在快速过渡。我们设想,我们的研究结果将鼓励其他学者和制药公司遵循这一新的研究途径,以解决缺乏对抗生素耐药微生物的治疗方法的问题。为了促进这一点,我们将免费提供我们的协议,模型和数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tania Dottorini其他文献

A genome-wide association study identifies genetic variants associated with hip pain in the UK Biobank cohort (N = 221,127)
一项全基因组关联研究在英国生物银行队列(N = 221,127)中确定了与髋部疼痛相关的基因变体
  • DOI:
    10.1038/s41598-025-85871-w
  • 发表时间:
    2025-01-22
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Qi Pan;Yiwen Tao;Tengda Cai;Abi Veluchamy;Harry L. Hebert;Peixi Zhu;Mainul Haque;Tania Dottorini;Lesley A. Colvin;Blair H. Smith;Weihua Meng
  • 通讯作者:
    Weihua Meng

Tania Dottorini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tania Dottorini', 18)}}的其他基金

FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant
Monitoring the gut microbiome via AI and omics: a new approach to detect infection and AMR and to support novel therapeutics in broiler precision farm
通过人工智能和组学监测肠道微生物组:一种检测感染和抗菌素耐药性并支持肉鸡精准农场新疗法的新方法
  • 批准号:
    BB/X017370/1
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant
Fighting Infection and AMR in broiler farming: AI, omics and smart sensing for diagnostics, treatment selection and gut microbiome improvement
肉鸡养殖中抗击感染和抗菌素耐药性:用于诊断、治疗选择和肠道微生物组改善的人工智能、组学和智能传感
  • 批准号:
    BB/W020424/1
  • 财政年份:
    2022
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant

相似国自然基金

多糖作为佐剂的细胞外囊泡作为大流行疾病疫苗的快速制备平台
  • 批准号:
    24ZR1477500
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新冠大流行期间中国超额死亡测算
  • 批准号:
    82304255
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
大流行疾病污名的认知神经机制:文化神经科学视角
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
以循证为基础的新冠大流行恢复期策略研究:评估和分析大流行对公众健康的影响
  • 批准号:
    72211540398
  • 批准年份:
    2022
  • 资助金额:
    15.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
单病毒尺度下多功能纳米光学芯片用于新冠病毒的早期检测和大流行预防
  • 批准号:
    22ZR1432400
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新冠肺炎大流行定量分析多层次框架:数学建模方法研究
  • 批准号:
    72171013
  • 批准年份:
    2021
  • 资助金额:
    200 万元
  • 项目类别:
    国际(地区)合作与交流项目
副溶血弧菌大流行株同源重组进化动力学研究
  • 批准号:
    32000008
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
转危为机:冠状病毒全球大流行背景下的监测预警及公卫策略系统仿真
  • 批准号:
    LD21G030001
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
全球疫情大流行下国际国内价值链重构对中国的影响和应对策略
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
临床与环境来源副溶血弧菌大流行株的微进化关系研究
  • 批准号:
    81703276
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Transitions Among Discrete Clinical States During ICU Stays in Patients with SARS-CoV-2 Pneumonia
SARS-CoV-2 肺炎患者入住 ICU 期间离散临床状态的转变
  • 批准号:
    10537554
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
2023 Salmonella Biology and Pathogenesis Gordon Research Conference and Seminar
2023年沙门氏菌生物学与发病机制戈登研究会议暨研讨会
  • 批准号:
    10683617
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
2023 Multi-Drug Efflux Systems: Targeting the Mechanisms and Regulation of Multi-Drug Transporters for Advancing Health during a Pandemic GRC/GRS
2023 多药物外排系统:针对多药物转运蛋白的机制和调节,以在大流行 GRC/GRS 期间促进健康
  • 批准号:
    10614335
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
2023 Applied and Environmental Microbiology Gordon Research Conference and Seminar
2023应用与环境微生物学戈登研究会议暨研讨会
  • 批准号:
    10751828
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
Electrochemical Catheter for Prevention of Central Line-Associated Bloodstream Infection
用于预防中心静脉导管相关血流感染的电化学导管
  • 批准号:
    10560927
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
CSHL 2023 Conference on Microbial Pathogenesis & Host Response
CSHL 2023微生物发病机制会议
  • 批准号:
    10675902
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
Type II alveolar epithelial cell-intrinsic IL-1 response in protective immunity against tuberculosis
II 型肺泡上皮细胞内在 IL-1 反应在结核病保护性免疫中的作用
  • 批准号:
    10660267
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
Biocontainment Research Support Service(s) Core
生物防护研究支持服务核心
  • 批准号:
    10793952
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
The role of serotonin in cooperative defenses during polymicrobial sepsis
血清素在多种微生物败血症期间协同防御中的作用
  • 批准号:
    10607955
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
2023 Microbial Population Biology Gordon Research Conference and Gordon Research Seminar
2023年微生物种群生物学戈登研究会议暨戈登研究研讨会
  • 批准号:
    10753797
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了