Enhancing automated, reproducible analysis workflows and data curation for extracellular neural recordings with SpikeInterface

使用 SpikeInterface 增强细胞外神经记录的自动化、可重复分析工作流程和数据管理

基本信息

  • 批准号:
    BB/X01861X/1
  • 负责人:
  • 金额:
    $ 95.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

How our brains give rise to cognition, thought and behaviour is one of the great unanswered questions in science today. Answering this question will impact fields ranging from medicine to artificial intelligence. The last decade has brought major innovations in technologies to precisely record the activity of large numbers of neurons in the brain. These advances allow, for the first time, the systematic study of the role of interactions between neurons in neural circuits and between brain areas at a large scale. However, the size and complexity of the resulting data sets is considerable and requires new approaches and methods for their analysis and interpretation. As in other research fields such as physics and genomics, the availability of new data has led to a community effort to tackle data analysis. Numerous algorithms and software tools are available to researchers, yet their effective use in neuroscience labs still requires technical expertise that is not always easily available. Moreover, labs typically implement hand-crafted analysis workflows that are not portable and may be difficult to maintain as the original developers move on. This, in turn, makes it difficult to integrate new developments and can limit reproducibility as results may depend on specific but undocumented elements of analysis workflows. To address this, we developed SpikeInterface, a software framework to unify access to data and major existing algorithms and tools for data processing and analysis. This successful open-source project has been used to support analysis in data-intensive research studies and has received numerous contributions from the research community. Here we propose to build on SpikeInterface to address two major open problems: 1) How to automate data curation; and 2) How to abstract workflows so they can be reproducible and designable without specialist programming expertise. Data curation is an essential part of analysis workflows as existing algorithms, for instance to isolate the activity of single neurons, are imperfect. Usually this is a time-consuming, manual process that severely limits the data volume a lab can realistically work with. To improve throughput and reproducibility, we will develop novel machine-learning approaches to automate data curation. To improve reproducibility and accessibility of these and the many other methods in SpikeInterface, we will add functionality to handle abstract representations of workflows. This will allow the full provenance of analysis workflows to be easily documented, and will enable data analysis to be created and run without the need to write program code. This, in turn, will be the basis for a web browser-based user interface to design, test and execute workflows. With flexible data access and pipelining SpikeInterface already implements, this will allow de-centralised solutions, for instance an analysis may be run locally, on a remote machine, or on a cloud-based service. Furthermore, the project team will support the research community in adoption and use of these tools, and will continue to maintain and improve the SpikeInterface software. Together this effort will make cutting-edge analysis methods available to the thousands of neuroscience labs now adopting large scale recording technologies, it will enable collaborative analysis of large data sets, and simplify sharing and re-use of valuable data sets for further discovery.
我们的大脑是如何产生认知、思想和行为的,这是当今科学界尚未回答的重大问题之一。解决这个问题将影响从医学到人工智能的各个领域。在过去的十年里,技术上的重大创新带来了精确记录大脑中大量神经元活动的技术。这些进展首次允许系统地研究神经回路中神经元之间以及大脑区域之间的相互作用。然而,由此产生的数据集的规模和复杂性是相当大的,需要新的方式和方法来进行分析和解释。与物理学和基因组学等其他研究领域一样,新数据的可用性导致社区努力解决数据分析问题。研究人员可以使用许多算法和软件工具,但在神经科学实验室中有效使用它们仍然需要技术专业知识,而这些知识并不总是容易获得的。此外,实验室通常实施手工制作的分析工作流程,这些工作流程不具有可移植性,并且随着原始开发人员的迁移可能难以维护。这反过来又使得难以集成新的开发,并且可能限制可重复性,因为结果可能取决于分析工作流程中特定但未记录的元素。为了解决这个问题,我们开发了SpikeInterface,这是一个软件框架,可以统一访问数据以及用于数据处理和分析的主要现有算法和工具。这个成功的开源项目已被用于支持数据密集型研究的分析,并收到了来自研究界的许多贡献。在这里,我们建议构建SpikeInterface来解决两个主要的开放问题:1)如何自动化数据管理; 2)如何抽象工作流,以便在没有专业编程知识的情况下可以重复和设计。数据管理是分析工作流的重要组成部分,因为现有的算法(例如隔离单个神经元的活动)是不完善的。通常,这是一个耗时的手动过程,严重限制了实验室实际工作的数据量。为了提高吞吐量和可重复性,我们将开发新的机器学习方法来自动化数据管理。为了提高这些方法和SpikeInterface中许多其他方法的可重复性和可访问性,我们将添加处理工作流抽象表示的功能。这将使分析工作流程的完整出处易于记录,并使数据分析能够在无需编写程序代码的情况下创建和运行。反过来,这将成为基于Web浏览器的用户界面的基础,以设计,测试和执行工作流程。SpikeInterface已经实现了灵活的数据访问和流水线,这将允许分散的解决方案,例如,分析可以在本地、远程机器或基于云的服务上运行。此外,项目小组将支持研究界采用和使用这些工具,并将继续维护和改进SpikeInterface软件。这一努力将使目前采用大规模记录技术的数千个神经科学实验室能够使用尖端的分析方法,它将使大型数据集的协作分析成为可能,并简化有价值数据集的共享和重复使用,以进一步发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Hennig其他文献

Matthias Hennig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Hennig', 18)}}的其他基金

Balancing resource and energy usage for optimal performance in a neural system
平衡资源和能量的使用以获得神经系统的最佳性能
  • 批准号:
    BB/K017950/1
  • 财政年份:
    2013
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Research Grant
Novel analytical and datasharing tools for rich neuronal activity datasets obtained with a 4096 electrodes array
用于通过 4096 电极阵列获得的丰富神经元活动数据集的新颖分析和数据共享工具
  • 批准号:
    BB/H023607/1
  • 财政年份:
    2010
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Research Grant
Computational models of interactions between developmental and homeostatic processes during nervous system development
神经系统发育过程中发育和稳态过程之间相互作用的计算模型
  • 批准号:
    G0900425/1
  • 财政年份:
    2009
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Fellowship
Modelling of Spontaneous Activity and its Developmental Role in the Immature Vertebrate Retina
未成熟脊椎动物视网膜自发活动的建模及其发育作用
  • 批准号:
    G0501327/1
  • 财政年份:
    2006
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Fellowship

相似海外基金

Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
  • 批准号:
    10089013
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Collaborative R&D
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
  • 批准号:
    IC230100001
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Industrial Transformation Training Centres
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Studentship
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Fellowship
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
  • 批准号:
    EP/Y002121/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Research Grant
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Standard Grant
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
  • 批准号:
    24K20757
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
  • 批准号:
    2327303
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Standard Grant
Automated Software Testing Platform
自动化软件测试平台
  • 批准号:
    10092457
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Collaborative R&D
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
  • 批准号:
    2345097
  • 财政年份:
    2024
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了