Presymptomatic detection with multispectral imaging to quantify and control the transmission of cassava brown streak disease
利用多光谱成像进行症状前检测以量化和控制木薯褐条病的传播
基本信息
- 批准号:BB/X018792/1
- 负责人:
- 金额:$ 93.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Assuring food security for 8 billion people is one of the most pressing challenges of the 21st century. Insurance crops like cassava, which can withstand droughts and grow in nutrient-poor soil, are projected to play a key role in these efforts. However, cassava production in East Africa it is limited by RNA viruses that cause cassava brown streak disease (CBSD). CBSD causes subtle to no symptoms on stems and leaves while destroying the root tissue, which means farmers may be unaware their field is infected until they have a failed harvest. Distressingly, the visible symptoms are so slight that cuttings provided by 'clean seed' programs may be infected. While molecular diagnostics like PCR can determine if plants are infected, they are economically inviable for testing many plants in a field. Since there are no cures for CBSD, farmers can only rogue infected plants (remove them from the field before they can spread infection), but models of rouging based on visible symptoms show the method to be ineffective. Because it is difficult to observe infection prior to harvest, we do not know how quickly CBSD spreads in fields due to transient association with whitefly vectors, which has harmed modeling efforts. CBSD has been spreading in East Africa since it became epidemic in the 1990s, the development of CBSD-resistant cassava clones has been slow, and the disease is at high risk for spread to West Africa.We propose to use an engineering advancement, our multispectral imager (MSI), to rapidly determine the infection status of plants in the field in Tanzania. It observes the leaves of plants with many different light spectra, which are then interpreted by machine learning models trained on cassava leaf scans. Under laboratory conditions, the MSI detects CBSD infection with 95% accuracy at 28 days post infection, when plants have no visible symptoms. We will experimentally study the spread of CBSD and parameterize transmission models to assess the efficacy of rouging with different detection methods in the most critical fields with large downstream effects within the clean seed propagation system. Finally, using these parameterized models we will look at how host susceptibility and environmental factors driving vector abundance affect disease pressure, and model interventions by farmers and agricultural agents to minimize regional spread and standing disease pressure from CBSD. Intellectual MeritOur study will be the first to track CBSD spread in the field, the first to accurately model the plant-to-plant spread of this emergent and damaging cassava pathogen, and the first to integrate methods with different limits of detection into a plant pathosystem with significant vegetative propagation. We will create both accurate tools for use in cassava and frameworks for employing our technology and models for other economically significant pathosystems in vegetatively propagated crops, such as potato, sweet potato, taro and yam.Broader ImpactsThis research will significantly impact the food security of people living in areas affected by CBSD and reduce the likelihood of further spread into other regions of Sub-Saharan Africa, where cassava is a staple crop for 800 million people. We will partner with Tanzanian cassava researchers with connections to the Tanzanian clean seed program to assure a high likelihood of translation of the conclusions of our work to real applications. We will share our results through accessible recorded talks, at regional meetings in Africa, presentations at scientific conferences. We will actively recruit researchers from traditionally excluded groups and will train at least four postdocs, a PhD student, a research associate, and at least eight undergraduate students. All trainees will be exposed to a multinational research team working on a critical problem of African agriculture.
确保80亿人的粮食安全是21世纪最紧迫的挑战之一。预计木薯等保险作物将在这些努力中发挥关键作用,因为木薯可以抵御干旱,在营养贫乏的土壤中生长。然而,东非的木薯生产受到导致木薯褐条病(CBSD)的RNA病毒的限制。在破坏根组织的同时,CBSD会在茎和叶上引起轻微甚至没有症状,这意味着农民可能直到收成不佳才意识到他们的田地被感染了。令人苦恼的是,可见的症状非常轻微,“清洁种子”项目提供的插枝可能会被感染。虽然像PCR这样的分子诊断方法可以确定植物是否被感染,但从经济上讲,它们不适合在一块地里检测许多植物。由于没有治疗CBSD的方法,农民只能让受感染的植物流浪(在它们传播感染之前把它们从田地里移走),但是基于可见症状的种植模型表明,这种方法是无效的。由于很难在收获前观察感染情况,我们不知道CBSD在田间传播的速度有多快,因为它与白蝇载体的短暂联系损害了建模工作。自20世纪90年代CBSD在东非流行以来,该疾病一直在东非蔓延,对CBSD具有抗性的木薯无性系的发展缓慢,并且该疾病具有向西非传播的高风险。我们建议使用一项工程进步,即我们的多光谱成像仪(MSI),来快速确定坦桑尼亚田间植物的感染状况。它用许多不同的光谱观察植物的叶子,然后通过对木薯叶子扫描进行训练的机器学习模型来解释这些光谱。在实验室条件下,MSI在感染后28天检测CBSD感染的准确率为95%,此时植物没有明显的症状。我们将通过实验研究CBSD的传播,并对传播模型进行参数化,以评估不同检测方法在清洁种子传播系统中下游影响较大的最关键领域的效果。最后,使用这些参数化模型,我们将研究宿主易感性和驱动媒介丰度的环境因素如何影响疾病压力,并模拟农民和农业代理商的干预措施,以最大限度地减少CBSD的区域传播和持续疾病压力。我们的研究将是第一个追踪CBSD在田间传播的研究,第一个准确模拟这种紧急和有害的木薯病原体在植物间的传播,第一个将不同检测限的方法整合到具有显著营养繁殖的植物病理系统中。我们将创建用于木薯的精确工具和框架,以便将我们的技术和模型应用于马铃薯、甘薯、芋头和山药等无性繁殖作物的其他经济上重要的病害系统。更广泛的影响这项研究将显著影响生活在受CBSD影响地区的人们的粮食安全,并减少进一步蔓延到撒哈拉以南非洲其他地区的可能性,木薯是该地区8亿人的主要作物。我们将与与坦桑尼亚清洁种子计划有联系的坦桑尼亚木薯研究人员合作,以确保我们的工作结论极有可能转化为实际应用。我们将通过可获取的录音谈话、在非洲的区域会议、在科学会议上的发言来分享我们的成果。我们将积极从传统上被排斥的群体中招募研究人员,并将培养至少四名博士后,一名博士生,一名研究助理和至少八名本科生。所有受训者都将接触到一个研究非洲农业关键问题的多国研究小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Grieve其他文献
Bruce Grieve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Grieve', 18)}}的其他基金
M-PACE: Establishing an Urban PACE towards Cultivating Healthy Diets for All Communities
M-PACE:建立城市 PACE,为所有社区培养健康饮食
- 批准号:
BB/Z514408/1 - 财政年份:2024
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
Low-cost fibre optic matting for direct live-mapping of livestock weight to improve feed efficiency. Development, demonstration & imaging integration.
低成本光纤垫,用于直接实时绘制牲畜体重,以提高饲料效率。
- 批准号:
NE/P007945/1 - 财政年份:2016
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
4D-HSI-4-Free: Integrating Sensors & Vision Process Engineering to Deliver a Tool for revealing 3D Hyperspectral Agri-data from 2D Images
4D-HSI-4-Free:集成传感器
- 批准号:
BB/N02107X/1 - 财政年份:2016
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
IKnowFood: Integrating Knowledge for Food Systems Resilience
IKnowFood:整合知识以增强粮食系统的弹性
- 批准号:
BB/N020626/1 - 财政年份:2016
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
13TSB_ACT: Tractor-mount sensing for precision application of Nitrogen and control of milling wheat protein content.
13TSB_ACT:拖拉机安装传感,用于精确施氮和控制制粉小麦蛋白质含量。
- 批准号:
BB/M005143/1 - 财政年份:2014
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
13TSB_ACT: SaturnSense Hydrofeed: In-line sensing of the full composition of nutrients for precision management of hydroponic farming
13TSB_ACT:SaturnSense Hydrofeed:在线感测营养物的全部成分,用于水培农业的精确管理
- 批准号:
BB/M005151/1 - 财政年份:2014
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
Non-invasive acoustic-seismic sensing of soils
土壤的非侵入式声震传感
- 批准号:
EP/H032401/1 - 财政年份:2010
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
膀胱癌高表达基因UPK3A的筛选、鉴定和相关研究
- 批准号:81101922
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于隐半马尔科夫模型的无线传感器网络入侵检测系统研究
- 批准号:61101083
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图像分类方法研究及其在色情监测中的应用
- 批准号:61172103
- 批准年份:2011
- 资助金额:62.0 万元
- 项目类别:面上项目
基于指令层次的网页木马渗透攻击机理分析与检测方法研究
- 批准号:61003217
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
超高速正则表达式匹配技术研究
- 批准号:61073184
- 批准年份:2010
- 资助金额:12.0 万元
- 项目类别:面上项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
制冷系统故障诊断关键问题的定量研究
- 批准号:50876059
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
- 批准号:
2344460 - 财政年份:2024
- 资助金额:
$ 93.6万 - 项目类别:
Standard Grant
US-UK Collab: Resurrecting a role for roguing: Presymptomatic detection with multispectral imaging to quantify and control the transmission of cassava brown streak disease
美英合作:恢复欺诈行为:利用多光谱成像进行症状前检测,以量化和控制木薯褐条病的传播
- 批准号:
2308503 - 财政年份:2023
- 资助金额:
$ 93.6万 - 项目类别:
Standard Grant
Multispectral Sensor for Chemical Composition Analysis of Ultrafine Aerosols in Air Quality Assessment
用于空气质量评估中超细气溶胶化学成分分析的多光谱传感器
- 批准号:
10546675 - 财政年份:2022
- 资助金额:
$ 93.6万 - 项目类别:
Project 3: Multispectral Imaging and Robotic Bronchoscopy Devices for Precision Lung Tumor Detection
项目3:用于精准肺部肿瘤检测的多光谱成像和机器人支气管镜设备
- 批准号:
10647652 - 财政年份:2022
- 资助金额:
$ 93.6万 - 项目类别:
Project 3: Multispectral Imaging and Robotic Bronchoscopy Devices for Precision Lung Tumor Detection
项目3:用于精准肺部肿瘤检测的多光谱成像和机器人支气管镜设备
- 批准号:
10333066 - 财政年份:2022
- 资助金额:
$ 93.6万 - 项目类别:
Bigfoot Multispectral High Speed Fluorescence Activated Cell Sorter
Bigfoot 多光谱高速荧光激活细胞分选仪
- 批准号:
10414835 - 财政年份:2022
- 资助金额:
$ 93.6万 - 项目类别:
Multispectral cellular-level retinal imaging for early detection of Alzheimer’s disease
用于早期检测阿尔茨海默病的多光谱细胞水平视网膜成像
- 批准号:
10323717 - 财政年份:2021
- 资助金额:
$ 93.6万 - 项目类别:
Detection and diagnosis of seed-borne diseases utilising machine learning enhanced gas plasma integrated multispectral imaging (DeTecSeeD)
利用机器学习增强型气体等离子体集成多光谱成像 (DeTecSeeD) 检测和诊断种传病害
- 批准号:
BB/V017462/1 - 财政年份:2021
- 资助金额:
$ 93.6万 - 项目类别:
Research Grant
Multispectral Needle Endoscopy: improving the patient breast cancer diagnostic experience
多光谱针内窥镜:改善患者乳腺癌诊断体验
- 批准号:
436926 - 财政年份:2020
- 资助金额:
$ 93.6万 - 项目类别:
Operating Grants
Exploiting Melanin Synthesis to Improve Tumor Detection with Multispectral Optoacoustic Tomography and Optical Guided Surgery
利用多光谱光声断层扫描和光引导手术利用黑色素合成来改善肿瘤检测
- 批准号:
9978211 - 财政年份:2020
- 资助金额:
$ 93.6万 - 项目类别: