Establishing the roles of oestrogen receptor 1 (ESR1) in olfactory development and function using novel CRISPR/Cas9-based knockouts in the zebrafish
使用基于 CRISPR/Cas9 的新型斑马鱼基因敲除技术确定雌激素受体 1 (ESR1) 在嗅觉发育和功能中的作用
基本信息
- 批准号:BB/Y00003X/1
- 负责人:
- 金额:$ 72.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In all animals, the sense of smell (olfaction) is fundamental for sensing the outside world with roles including for feeding, avoiding predators, social interactions, and reproduction. Much of the information for these smell associated behaviours is imprinted during early-life and in humans smell dysfunction is an early indicator of various behavioural disorders, including autism. The ways (mechanisms) through which smell develops in early life to influence subsequent animal behaviours, however, are largely unknown. Recently, we discovered that oestrogens (which are steroid hormones) regulate olfactory development in the embryo brain via a novel cell type which we have named oestrogen responsive olfactory bulb (EROB). In this project we will apply highly novel ways (so called CRISPR-Cas9 methods), developed by our industry partner (AstraZeneca), to remove (knock out) the key oestrogen receptor (called esr 1) in a highly controlled cell-specific and precisely-timed manner. This will help us to identify the role of esr1 in the development of smell and smell-mediated behaviour. The CRISPR-Cas9 methods we will develop will also allow other researchers to study other genes with much greater precision in the zebrafish model. In this work we will first knock out esr1 in zebrafish in specific brain cells (called glia, which include EROB) in a highly controlled and timed manner to provide the required zebrafish study models. We will then use these zebrafish models to establish what happens to the anatomy of the brain and the neural circuits in a key region of the brain involved in smell (the olfactory bulb) when esr-1 is knocked out. We will do this by analysing brain sections and measuring the different brain cell types, their structural arrangements and the neural circuits they form. We will then cross breed our esr1 knock out zebrafish with another genetically modified zebrafish in which brain neural activity can be visualised via imaging. With this new zebrafish model we will assess the effects of the glial-specific knock out of esr-1 during embryo development on brain activity in response to selected smells using imaging, and in subsequent juveniles and adults through studies on sections of the brain. Finally, we will use behavioural assessments to determine the consequences of knocking out esr1 in EROB cells on smell-mediated behaviours in larval stages, and on social-interaction in both larval and adult animals. We provide significant pilot data supporting our approach that includes showing that esr1 specifically affects the number of EROB cells during development. As a major step in creating a brain cell- specific conditional esr 1 knock out we have also already incorporated key genetic elements into a zebrafish line to facilitate this. Furthermore, we have established an imaging system which allows us to image neural activity in the whole brain, in real time.Our research will be of significant interest to a diverse audience including academic and industry researchers, and the medical profession, by providing new models to study smell and the roles of oestrogens in brain development and function. Our project will advance genomic editing tools for the research community relevant to anyone studying genes and their function in the zebrafish model. It will also be of great interest to industry and government regulatory bodies, as the models developed, for example, could be applied for advancing the risk assessment of chemicals with oestrogenic activity, supporting evidence-based decision-making for those chemicals. The wider public will benefit also from this research from improved understanding of basic life processes associated with smell, a sense fundamental to animal (including human) life.
在所有动物中,嗅觉(嗅觉)对于以喂食,避免捕食者,社交互动和繁殖的角色感知外界都是基本的。这些相关行为的许多信息在早期生活中都印在了,并且在人类中,气味功能障碍是包括自闭症在内的各种行为障碍的早期指标。然而,气味在早期生命中发展以影响后续动物行为的方式(机制)在很大程度上是未知的。最近,我们发现雌激素(类固醇激素)通过一种新型细胞类型调节胚胎大脑中的嗅觉发育,我们将其命名为雌激素反应式嗅球(EROB)。在这个项目中,我们将采用高度新颖的方法(所谓的CRISPR-CAS9方法),该方法是由我们的行业伙伴(阿斯特拉赛)开发的,以高度控制的细胞特异性且精确的方式去除(敲除)关键的雌激素受体(称为ESR 1)。这将有助于我们确定ESR1在气味和气味介导的行为发展中的作用。我们将开发的CRISPR-CAS9方法还将允许其他研究人员在斑马鱼模型中研究其他基因。在这项工作中,我们将以高度控制和定时的方式在特定的脑细胞中(称为Glia,包括EROB)中的斑马鱼中淘汰ESR1,以提供所需的斑马鱼研究模型。然后,我们将使用这些斑马鱼模型来确定大脑解剖结构的发生,以及当ESR-1被淘汰时,涉及气味的大脑关键区域中的神经回路会发生什么。我们将通过分析脑部切片并测量不同的脑细胞类型,它们的结构排列以及它们形成的神经回路来做到这一点。然后,我们将与另一个转基因斑马鱼淘汰斑马鱼的ESR1将斑马鱼淘汰,其中可以通过成像可视化脑神经活动。通过这种新的斑马鱼模型,我们将通过对胚胎发育过程中的胶质特异性敲除ESR-1对脑活动的影响,以响应使用成像的选定气味,以及随后的少年和成年人,通过对大脑部分的研究。最后,我们将使用行为评估来确定在幼体阶段敲除EROB细胞中敲出ESR1的后果,以及在幼虫和成年动物中的社交交流中。我们提供了支持我们方法的重要试验数据,其中包括表明ESR1在开发过程中特异性影响EROB细胞的数量。作为创建脑细胞特异性有条件ESR 1的主要步骤,我们还已经将关键的遗传元素纳入斑马鱼线以促进这一点。此外,我们已经建立了一个成像系统,该系统使我们能够实时对整个大脑的神经活动进行想象。我们的研究将通过提供新的模型来研究气味和Oestrogens在大脑发育和功能中的角色,包括学术和行业研究人员和医学界,包括学术和行业研究人员和医学界的重要兴趣。我们的项目将促进与研究基因及其在斑马鱼模型中的功能相关的研究社区的基因组编辑工具。例如,由于开发的模型可以用于推进具有生气活动的化学物质的风险评估,这也将引起行业和政府监管机构的极大兴趣,从而支持这些化学物质的基于证据的决策。更广泛的公众也将从这项研究中受益于对与气味相关的基本生命过程的了解,这是对动物(包括人类)生命基础的感觉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Tyler其他文献
Development of a quantitative enzyme-linked immunosorbent assay for vitellin in the mysid <em>Neomysis integer</em> (Crustacea: Mysidacea)
- DOI:
10.1016/j.cbpa.2005.07.006 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:
- 作者:
An Ghekiere;Martina Fenske;Tim Verslycke;Charles Tyler;Colin Janssen - 通讯作者:
Colin Janssen
Charles Tyler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Tyler', 18)}}的其他基金
Developing novel models to understand threats from Vibrio pathogens for safeguarding aquatic food supply under future climates
开发新模型来了解弧菌病原体的威胁,以保障未来气候下的水产食品供应
- 批准号:
NE/X010333/1 - 财政年份:2023
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Quantifying the combined nutrient enrichment, pathogenic, and ecotoxicological impacts of livestock farming on UK rivers
量化畜牧业对英国河流的综合营养富集、致病和生态毒理学影响
- 批准号:
NE/X015815/1 - 财政年份:2022
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Advancing understanding of anaesthesia and analgesia in the zebrafish
增进对斑马鱼麻醉和镇痛的了解
- 批准号:
BB/V000411/1 - 财政年份:2021
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Improving hatchery biosecurity for a sustainable shrimp industry in Bangladesh
改善孟加拉国孵化场生物安全,实现可持续养虾业
- 批准号:
BB/T012579/1 - 财政年份:2020
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
ROBUST-SMOLT: Impact of early life history in freshwater recirculation aquaculture systems on salmon robustness and susceptibility to disease at sea.
ROBUST-SMOLT:淡水循环水产养殖系统的早期生活史对海上鲑鱼的稳健性和疾病易感性的影响。
- 批准号:
BB/S004122/1 - 财政年份:2019
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Japan Partnering Award -Engineering novel transgenic zebrafish with CRISPR/Cas9 technology
日本合作奖-利用 CRISPR/Cas9 技术工程改造新型转基因斑马鱼
- 批准号:
BB/P025528/1 - 财政年份:2017
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Novel Molecular Approaches for Advancing Prediction and Mitigation of Disease Outbreaks in Aquaculture for Small Scale Farmers
促进小规模养殖户水产养殖疾病暴发预测和缓解的新型分子方法
- 批准号:
BB/N00504X/1 - 财政年份:2016
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Metal/Metal Oxide Nanomaterials and Oxidative Stress- Are there Harmful Health Effects in Fish for Environmental Exposures?
金属/金属氧化物纳米材料和氧化应激 - 鱼类暴露于环境中是否会对健康产生有害影响?
- 批准号:
NE/L007371/1 - 财政年份:2014
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Functional role(s) of oestrogen signalling on neuronal progenitor cell development and fate in the brain
雌激素信号对大脑神经祖细胞发育和命运的功能作用
- 批准号:
BB/L020637/1 - 财政年份:2014
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
Can roach, Rutilus rutilus, adapt to the harmful effects of oestrogen exposure from waste water treatment work effluents?
蟑螂(Rutilus rutilus)能否适应废水处理工作废水中雌激素暴露的有害影响?
- 批准号:
NE/K004263/1 - 财政年份:2013
- 资助金额:
$ 72.31万 - 项目类别:
Research Grant
相似国自然基金
面向情感引导的多角色多模态交互关键技术研究
- 批准号:62376084
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
互动视角下品牌数字人对消费者的影响研究:数字人的角色、虚实结合与情感策略的作用
- 批准号:72372057
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
旅游参与度差异视角下乡村妇女社会角色变迁、自我效能感及其关联机制研究
- 批准号:72362010
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
喜忧参半:服务机器人角色对旅游企业员工幸福感的双路径影响机制研究
- 批准号:72302099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非宿主噬菌体在宿主噬菌体裂解水稻白叶枯病菌中的帮助角色及其自我牺牲机制研究
- 批准号:32372614
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Chemical staples and chemical probes to dissect dynamins cellular roles.
用于剖析动力细胞作用的化学钉书和化学探针。
- 批准号:
DP240100514 - 财政年份:2024
- 资助金额:
$ 72.31万 - 项目类别:
Discovery Projects
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 72.31万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 72.31万 - 项目类别:
Standard Grant
生物の乱雑さに学ぶ「明るく・広角・色分散なし」を並立する透過型光拡散板の開発
向杂乱的生物学习:开发明亮、广角、无色散的透射光扩散板
- 批准号:
23K26571 - 财政年份:2024
- 资助金额:
$ 72.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
- 批准号:
24K18094 - 财政年份:2024
- 资助金额:
$ 72.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists