Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
基本信息
- 批准号:BB/Y001567/1
- 负责人:
- 金额:$ 61.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
All organisms from bacteria to humans rely on molecular machines to ensure accurate replication of their genomes. The DNA mismatch repair pathway (MMR) spots and reverts errors during DNA synthesis. The proteins that perform MMR in cells solve a remarkable problem, detecting single misincorporated DNA bases amongst millions of correctly matched bases in the genome. Without MMR, mutation rates in cells increase 100 to 1000-fold. Loss of MMR is thus a driver of diseases, with accelerated genetic change leading to cancer development in humans and acquisition of drug resistance mutations in pathogens. Investigating the molecular mechanisms of MMR is therefore paramount for understanding its fundamental role in evolution, health and disease. MMR also plays an important role in the efficiency of genome engineering techniques that are currently revolutionising biological research, biotechnology, and medicine.The mismatch repair mechanism must be both fast and accurate. This is achieved via the sequential action of different proteins (called MutS, MutL, MutH), whose recruitment and enzymatic activities on DNA are tightly controlled. Much has been learnt about the mechanism of MMR based on experiments with purified proteins, but it remains uncertain how the repair process works inside a living cell. Our proposal addresses this large gap in the understanding of MMR. My lab specialises in the development of single-molecule microscopy methods to directly observe the unperturbed function of proteins in cells. Via high-speed fluorescence imaging, we can track the movement of individual proteins and detect when and where they bind to DNA. This allows us to obtain the exact information needed to address how MMR proteins search for repair sites and how the sequential steps in the pathway are coordinated. We will perform these experiments in E. coli bacteria - the organism in which MMR has been characterised in most detail. E. coli cells are also ideally suited for our imaging methods.Visualising repair events in living cells will allow us to explore why MMR sometimes goes wrong. Although this happens rarely, each repair failure leads to a permanent mutation in a cell. One failure of the MMR pathway can be the moment when a human cell turns cancerous, or a pathogenic bacterium becomes drug resistant. We will extract quantitative information about the speed and location of repair events from our microscopy data, and feed this into a mathematical model to identify which factors determine repair success and failure. Overall, this project will establish how MMR proteins work together in a pathway, providing direct insight into a central process that preserves the genetic information in cells.
从细菌到人类的所有生物都依赖于分子机器来确保其基因组的准确复制。DNA错配修复途径(MMR)在DNA合成过程中发现并恢复错误。在细胞中执行MMR的蛋白质解决了一个显著的问题,即在基因组中数百万个正确匹配的碱基中检测单个错误掺入的DNA碱基。如果没有MMR,细胞中的突变率会增加100至1000倍。因此,MMR的丧失是疾病的驱动因素,加速的遗传变化导致人类癌症的发展和病原体耐药性突变的获得。因此,研究MMR的分子机制对于了解其在进化,健康和疾病中的基本作用至关重要。MMR在基因组工程技术的效率方面也发挥着重要作用,这些技术目前正在彻底改变生物研究,生物技术和医学。这是通过不同蛋白质(称为MutS,MutL,MutH)的顺序作用来实现的,这些蛋白质在DNA上的募集和酶活性受到严格控制。基于对纯化蛋白质的实验,人们已经对MMR的机制有了很多了解,但仍然不确定修复过程在活细胞内如何工作。我们的建议解决了对产妇死亡率认识上的这一巨大差距。我的实验室专门从事单分子显微镜方法的开发,以直接观察细胞中蛋白质的未受干扰的功能。通过高速荧光成像,我们可以跟踪单个蛋白质的运动,并检测它们何时何地与DNA结合。这使我们能够获得所需的确切信息,以解决MMR蛋白如何搜索修复位点以及如何协调途径中的顺序步骤。我们将在E.大肠杆菌-MMR已被最详细地表征的生物体。E.大肠杆菌细胞也非常适合我们的成像方法。可视化活细胞中的修复事件将使我们能够探索为什么MMR有时会出错。虽然这种情况很少发生,但每次修复失败都会导致细胞发生永久性突变。MMR途径的一个失败可能是人类细胞癌变或病原菌产生抗药性的时刻。我们将从显微镜数据中提取有关修复事件的速度和位置的定量信息,并将其输入数学模型,以确定哪些因素决定修复成功和失败。总的来说,该项目将确定MMR蛋白如何在一个通路中共同工作,为保留细胞中遗传信息的中心过程提供直接的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Uphoff其他文献
A Quantitative Model Explains Single-Cell Dynamics of the Adaptive Response in <em>Escherichia coli</em>
- DOI:
10.1016/j.bpj.2019.08.009 - 发表时间:
2019-09-17 - 期刊:
- 影响因子:
- 作者:
Stephan Uphoff - 通讯作者:
Stephan Uphoff
Imaging LexA degradation in cells explains regulatory mechanisms and heterogeneity of the SOS response
细胞内 LexA 降解成像解释了 SOS 反应的调节机制和异质性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
E. Jones;Stephan Uphoff - 通讯作者:
Stephan Uphoff
Real-time dynamics of mutagenesis reveal the chronology of DNA repair and damage tolerance responses in single cells
诱变的实时动态揭示了单细胞中 DNA 修复和损伤耐受反应的时间顺序
- DOI:
10.1073/pnas.1801101115 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Stephan Uphoff - 通讯作者:
Stephan Uphoff
TIRF-Based FRET with One Base-Pair Resolution
- DOI:
10.1016/j.bpj.2009.12.2230 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Seamus J. Holden;Stephan Uphoff;David Yadin;Johannes Hohlbein;Ludovic Le Reste;Oliver J. Britton;Achillefs N. Kapanidis - 通讯作者:
Achillefs N. Kapanidis
Improved temporal resolution and linked hidden Markov modeling for switchable single-molecule FRET.
改进的时间分辨率和链接的隐马尔可夫模型可切换单分子 FRET。
- DOI:
10.1002/cphc.201000834 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Stephan Uphoff;Kristofer Gryte;G. Evans;A. Kapanidis - 通讯作者:
A. Kapanidis
Stephan Uphoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
- 批准号:22302208
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
跨文化团队中团队协调机制和团队效能的研究:文化智力的视角
- 批准号:71072055
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
- 批准号:20973136
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
资金约束供应链中金融和运营集成决策研究
- 批准号:70872012
- 批准年份:2008
- 资助金额:22.0 万元
- 项目类别:面上项目
钌苯络合物的配位立体化学及其氢转移催化性能研究
- 批准号:20773098
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 61.08万 - 项目类别:
Coordination of DNA Metabolism by Replication Protein A
复制蛋白 A 协调 DNA 代谢
- 批准号:
10623523 - 财政年份:2023
- 资助金额:
$ 61.08万 - 项目类别:
DNA ligase activities during base excision repair coordination
碱基切除修复协调过程中的 DNA 连接酶活性
- 批准号:
10797226 - 财政年份:2022
- 资助金额:
$ 61.08万 - 项目类别:
Project 3: Contribution of inflammation and DNA damaging factors to clonal expansion and malignant transformation in a community cohort of older adults
项目 3:炎症和 DNA 损伤因素对社区老年人群克隆扩张和恶性转化的影响
- 批准号:
10606559 - 财政年份:2022
- 资助金额:
$ 61.08万 - 项目类别:
Project 3: Contribution of inflammation and DNA damaging factors to clonal expansion and malignant transformation in a community cohort of older adults
项目 3:炎症和 DNA 损伤因素对社区老年人群克隆扩张和恶性转化的影响
- 批准号:
10332337 - 财政年份:2022
- 资助金额:
$ 61.08万 - 项目类别:
DNA ligase activities during base excision repair coordination
碱基切除修复协调过程中的 DNA 连接酶活性
- 批准号:
10679039 - 财政年份:2022
- 资助金额:
$ 61.08万 - 项目类别:
Rational design of DNA molecular machines based on supramolecular coordination chemistry
基于超分子配位化学的DNA分子机器的合理设计
- 批准号:
21H02055 - 财政年份:2021
- 资助金额:
$ 61.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Coordination of DNA repair and transcription by ubiquitin modification at DNA double strand breaks
DNA 双链断裂处泛素修饰协调 DNA 修复和转录
- 批准号:
10599965 - 财政年份:2020
- 资助金额:
$ 61.08万 - 项目类别:
Coordination of DNA repair and transcription by ubiquitin modification at DNA double strand breaks
DNA 双链断裂处泛素修饰协调 DNA 修复和转录
- 批准号:
10380138 - 财政年份:2020
- 资助金额:
$ 61.08万 - 项目类别:
Coordination polymer approach to DNA functionalisation and assembly
DNA 功能化和组装的配位聚合物方法
- 批准号:
EP/S015906/1 - 财政年份:2018
- 资助金额:
$ 61.08万 - 项目类别:
Research Grant