Discovery of a cryptic sphingolipid pathway in E.coli - structural and functional analysis.

大肠杆菌中神秘鞘脂途径的发现 - 结构和功能分析。

基本信息

  • 批准号:
    BB/Y002210/1
  • 负责人:
  • 金额:
    $ 72.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

A very important, large family of biological molecules are called lipids. They include fats and steroids such as cholesterol. Another important sub-family are known as sphingolipids (SLs) and ceramides (which are like SLs with two tails). All these lipids are found in the cell membrane - scientists have found that animal, plants and bacterial cells have a protective, water-resistant outer shell that is composed of molecules with a water-loving (hydrophilic) head group and a long, water-hating (hydrophobic) tail. It is these molecules that provide that layer. However, they don't just have a structural role - they have been shown to be important when cells divide and when cells communicate with each other. There is a high turnover of lipids in the every cell, they are constantly being made and broken down. This is tightly controlled. In particular, changes in SL levels are strongly linked with old age and diseases such as Alzheimer's, Parkinson's Disease, diabetes, asthma, cancer and nerve-wasting diseases. It is rare to find molecules made by both plants, animals and bacteria; SLs and ceramides are exactly that - they are very large family of 100s of molecules, each slightly different - they contain amino acids, fatty acids and sugars. However, the core structures are the same. An exciting area of research with direct implications for human health is the discovery that humans are hosts for many different types of bacteria - collectively these are known as the microbiota/microbiome. These bacteria live in our mouths, on our skin and in our gut and help us metabolise our food and are also thought to play protective roles. They keep us healthy; so we have to understand when is a bacteria good and when is a bacteria bad - pathogenic? What are the chemical triggers?Every cell make SLs by a multi-step pathway using simple building blocks - the steps are catalysed (sped up) by molecular machines called enzymes. In recent years, research has focussed on the enzymes involved in human SL biosynthesis but very little is known about how microbes make them. We made a breakthrough when we teamed up with American scientists to reveal that a simple, safe Caulobacter bacterium that lives in fresh water can make the same core SLs as we can, but it makes them through a different route - that's called convergent evolution. We then used genetics to look at the DNA of other bacteria - what we thought to present in a small number of microbes is more much more widespread. We have even found them in E. coli - a very common bacteria that can be good and bad. Scientists have used E. coli for many years because they are safe and easy to grow, easy to engineer and we have a blue-print of how they work. Now we have made an exciting discovery that E. coli make SLs we want to understand the molecular details of the process - we will study the enzymes involved. We will determine the 3D structure of the key SPT enzyme and how it engages with a lipid carrier. We will explore how the two lipids chains of SLs are installed. We will also grow E.coli in specially marked building blocks and that will reveal how the core molecules are made. This is a team effort with UK and USA scientists each bringing their own expertise to this project. We will use our skills as chemists, microbiologists and molecular biologists to uncover the secrets that have been hidden in E. coli until now. Our results will be of interest to academic microbiologists and chemists as well as those interested how molecules evolved. We are building a inventory called Lipid Maps of all the important lipid molecules in Nature. Because E. coli has been a model microbe for >50 years, it is rare to find something new - so it is exciting to work in this area.
一个非常重要的生物分子大家族被称为脂质。它们包括脂肪和类固醇,如胆固醇。另一个重要的亚家族是鞘脂(SLs)和神经酰胺(类似于有两条尾巴的SLs)。所有这些脂质都存在于细胞膜中——科学家们发现动物、植物和细菌细胞都有一个保护性的、防水的外壳,这个外壳是由亲水(亲水)头基团和长而憎水(疏水)尾的分子组成。正是这些分子提供了这一层。然而,它们不仅仅具有结构作用——它们在细胞分裂和细胞相互交流时也很重要。每个细胞中都有大量的脂质周转,它们不断地被制造和分解。这是严格控制的。特别是,SL水平的变化与老年和阿尔茨海默氏症、帕金森病、糖尿病、哮喘、癌症和神经损耗性疾病等疾病密切相关。很难找到同时由植物、动物和细菌构成的分子;SLs和神经酰胺正是如此——它们是由数百个分子组成的大家族,每个分子都略有不同——它们含有氨基酸、脂肪酸和糖。然而,核心结构是相同的。一个对人类健康有直接影响的令人兴奋的研究领域是发现人类是许多不同类型细菌的宿主——这些细菌统称为微生物群/微生物组。这些细菌生活在我们的口腔、皮肤和肠道中,帮助我们代谢食物,也被认为起着保护作用。它们使我们保持健康;所以我们必须了解什么时候细菌是好的,什么时候细菌是坏的——致病的?化学诱因是什么?每个细胞通过使用简单的构建块通过多步骤途径制造SLs——这些步骤由称为酶的分子机器催化(加速)。近年来,研究主要集中在与人类SL生物合成有关的酶上,但对微生物如何制造它们知之甚少。当我们与美国科学家合作时,我们取得了突破,发现一种生活在淡水中的简单,安全的Caulobacter细菌可以产生与我们相同的核心SLs,但它通过不同的途径产生它们-这被称为趋同进化。然后,我们用遗传学的方法研究了其他细菌的DNA——我们认为存在于少数微生物中的DNA其实分布得更广。我们甚至在大肠杆菌中发现了它们——一种非常常见的细菌,可以是好的,也可以是坏的。科学家们已经使用大肠杆菌很多年了,因为它们安全,易于生长,易于设计,我们对它们的工作方式有一个蓝图。现在我们有了一个令人兴奋的发现,即大肠杆菌可以制造SLs。我们想要了解这个过程的分子细节——我们将研究所涉及的酶。我们将确定关键SPT酶的三维结构以及它如何与脂质载体结合。我们将探讨SLs的两个脂质链是如何安装的。我们还将在特殊标记的构建块中培养大肠杆菌,这将揭示核心分子是如何形成的。这是一个团队的努力,英国和美国的科学家都把自己的专业知识带到这个项目中。我们将利用我们作为化学家、微生物学家和分子生物学家的技能,揭开迄今为止一直隐藏在大肠杆菌中的秘密。我们的研究结果将引起学术微生物学家和化学家以及那些对分子如何进化感兴趣的人的兴趣。我们正在建立一个名为脂质图谱的目录,包含自然界中所有重要的脂质分子。因为大肠杆菌作为一种模范微生物已经有50多年了,所以很少能发现新的东西,所以在这个领域工作是令人兴奋的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dominic Campopiano其他文献

Isoleucine/leucine<sup>2</sup> is essential for chemoattractant activity of β-defensin Defb14 through chemokine receptor 6
  • DOI:
    10.1016/j.molimm.2009.11.025
  • 发表时间:
    2010-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christine Tyrrell;Martin De Cecco;Natalie L. Reynolds;Fiona Kilanowski;Dominic Campopiano;Perdita Barran;Derek Macmillan;Julia R. Dorin
  • 通讯作者:
    Julia R. Dorin

Dominic Campopiano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dominic Campopiano', 18)}}的其他基金

Sphingolipids; key communicators from the microbial world.
鞘脂类;
  • 批准号:
    BB/X018490/1
  • 财政年份:
    2023
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Bacterial sphingolipids - revealing hidden biosynthetic pathways of key players in host-microbe interactions.
细菌鞘脂 - 揭示宿主与微生物相互作用中关键参与者的隐藏生物合成途径。
  • 批准号:
    BB/V001620/1
  • 财政年份:
    2021
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
2019BBSRC-NSF/BIO. SynBioSphinx: building designer lipid membranes for adaptive resilience to environmental challenges.
2019BBSRC-NSF/BIO。
  • 批准号:
    BB/T016841/1
  • 财政年份:
    2020
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Modulators of sphingolipid synthesis - new therapeutics for disease control.
鞘脂合成调节剂 - 疾病控制的新疗法。
  • 批准号:
    BB/T010126/1
  • 财政年份:
    2019
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Underpinning UK Biomolecular Research with Next-Generation High Resolution Mass Spectrometry at the University of Edinburgh
爱丁堡大学利用下一代高分辨率质谱支持英国生物分子研究
  • 批准号:
    BB/R013993/1
  • 财政年份:
    2018
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
The human serine palmitoyltransferase (SPT) complex; specificity, structure, regulation and inhibition.
人丝氨酸棕榈酰转移酶(SPT)复合物;
  • 批准号:
    BB/M003493/1
  • 财政年份:
    2015
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Exploring, evolving and exploiting coupled racemase/acylase biotransformation systems.
探索、发展和利用耦合消旋酶/酰基酶生物转化系统。
  • 批准号:
    BB/K006487/1
  • 财政年份:
    2013
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Sphingolipidomic analysis.
鞘脂组学分析。
  • 批准号:
    BB/J020354/1
  • 财政年份:
    2012
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Elucidation of the bacterial sphingolipid biosynthetic pathway in Sphingomonas wittichii.
阐明维氏鞘氨醇细菌鞘脂生物合成途径。
  • 批准号:
    BB/I013687/1
  • 财政年份:
    2011
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Sphingolipid biosynthesis in man and microbes
人和微生物中的鞘脂生物合成
  • 批准号:
    BB/G53045X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317938
  • 财政年份:
    2024
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Continuing Grant
NSFGEO-NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
NSFGEO-NERC:灾难之后:大火成岩省火山活动后的神秘排气和延迟恢复
  • 批准号:
    NE/Y00650X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317937
  • 财政年份:
    2024
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Continuing Grant
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317935
  • 财政年份:
    2024
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317939
  • 财政年份:
    2024
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Continuing Grant
How to Detect, Monitor, and Assess Population Change in Threatened Cryptic Mammal Species.
如何检测、监测和评估受威胁的隐秘哺乳动物物种的种群变化。
  • 批准号:
    2843369
  • 财政年份:
    2023
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Studentship
Development of knowledge-based computational method for drug discovery targeting cryptic pockets
开发基于知识的计算方法,用于针对神秘口袋的药物发现
  • 批准号:
    23K06085
  • 财政年份:
    2023
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSFDEB-NERC: Integrating computational, phenotypic, and population-genomic approaches to reveal processes of cryptic speciation and gene flow in Madag
NSFDEB-NERC:整合计算、表型和群体基因组方法来揭示马达格神秘物种形成和基因流的过程
  • 批准号:
    NE/X002071/1
  • 财政年份:
    2023
  • 资助金额:
    $ 72.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了