AGILE: A Cloud Approach to Automatic Gene Expression Pattern Recognition and Annotation Over Large-Scale Images

AGILE:大规模图像上自动基因表达模式识别和注释的云方法

基本信息

  • 批准号:
    BB/K004077/1
  • 负责人:
  • 金额:
    $ 14.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Modern biomedical research makes significant use of large datasets. Cloud computing is emerging as a cost-effective solution by providing virtual computers and storage disks on demand to store and process massive data efficiently without large upfront costs.Despite some progress made, the use of cloud computing in the biomedical research is still at the very early stage. There exist various concerns on how to best utilise the cloud for accelerating large-scale biomedical applications. Especially, can a biomedical application be directly migrated to the cloud without requiring any modification? How to develop a cloud-based biomedical application? What are the performance and the cost of an application in the cloud? Are the performance and the cost acceptable? Do we have optimal methods to keep both performance and the overall cost of applications within the acceptable range in the cloud?This project will develop a cloud approach for a real biomedical data intensive task for effective gene expression pattern recognition and annotation over large-scale image data through addressing the concerns above. This task is chosen largely for its importance in the biomedical research. This type of intensive data-analysis task is increasingly common in the biomedical sciences. This particular task concerns developmental anatomy of mouse embryo: it is of great interest to identify gene interactions and networks that are associated with developmental and physiological functions in the embryo by using anatomical annotation. The gene expression pattern recognition and annotation represents labelling embryo images with anatomical terms for mouse development. If an image is tagged with a term, it means the corresponding anatomical component shows expression of that gene. Currently, this task is mainly taken manually by domain experts. However, with the availability of the vast amount of data, a manual annotation is expensive and time consuming. Additionally, the manual annotation may also produce the inconsistency of labels across images introduced by the human annotators as it proves to be highly subjective. To alleviate issues with the manual annotation, we have employed data mining techniques to automatically identify an anatomical component in the embryo image and annotate the image using the provided terms. As this task involves the use of very large-scale images, we intend to exploit cloud computing for this task to address the massive data problems.It is expected that the successful completion of this project will provide a typical exemplar for accessing and exploiting cloud computing technologies to analyse large-scale image-based biomedical data. An important, and novel, aspect of this proposal is that the major concerns that limit the more widespread use of cloud computing for biomedical applications will be addressed. The theoretical component of the work aims to provide (1) a practical user-friendly biomedical data-mining tool based on the cloud for effective gene expression pattern recognition and annotation and (2) a set of standard services (e.g. image processing algorithms, data mining algorithms) and a novel automatic data reuse mechanism for performance enhancement and cost reduction, which can be reused and plugged into the class of similar biomedical applications.
现代生物医学研究大量使用大型数据集。云计算正在成为一种具有成本效益的解决方案,它可以按需提供虚拟计算机和存储磁盘,以有效地存储和处理大量数据,而无需大量的前期成本。尽管取得了一些进展,但云计算在生物医学研究中的应用仍处于非常早期的阶段。关于如何最好地利用云来加速大规模生物医学应用,存在着各种各样的问题。特别是,生物医学应用程序是否可以直接迁移到云端而无需任何修改?如何开发基于云的生物医学应用?云中应用程序的性能和成本是什么?性能和成本是否可接受?我们是否有最佳的方法来将应用程序的性能和总体成本保持在云中可接受的范围内?该项目将通过解决上述问题,为真实的生物医学数据密集型任务开发一种云方法,用于大规模图像数据的有效基因表达模式识别和注释。选择这项任务主要是因为它在生物医学研究中的重要性。这种密集的数据分析任务在生物医学科学中越来越普遍。这个特殊的任务涉及小鼠胚胎的发育解剖学:通过使用解剖学注释来识别与胚胎中的发育和生理功能相关的基因相互作用和网络是非常有趣的。基因表达模式识别和注释代表用小鼠发育的解剖学术语标记胚胎图像。如果一个图像被标记了一个术语,这意味着相应的解剖成分显示了该基因的表达。目前,这项任务主要由领域专家手动完成。然而,由于大量数据的可用性,手动注释是昂贵且耗时的。此外,手动注释还可能产生由人类注释者引入的跨图像的标签的不一致性,因为它被证明是高度主观的。为了缓解手动注释的问题,我们采用了数据挖掘技术来自动识别胚胎图像中的解剖成分,并使用所提供的术语对图像进行注释。由于这项工作涉及使用非常大规模的图像,我们打算利用云计算来解决这项工作中的海量数据问题。预计这项项目的成功完成将为访问和利用云计算技术分析基于图像的大规模生物医学数据提供典型范例。该提案的一个重要且新颖的方面是,将解决限制云计算在生物医学应用中更广泛使用的主要问题。该工作的理论部分旨在提供(1)基于云的实用用户友好的生物医学数据挖掘工具,用于有效的基因表达模式识别和注释,以及(2)一套标准服务(例如图像处理算法、数据挖掘算法)和用于性能增强和成本降低的新颖的自动数据重用机制,其可以被重复使用并插入到类似的生物医学应用中。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic data reuse for accelerating data intensive applications in the Cloud
A genetic algorithm enhanced automatic data flow management solution for facilitating data intensive applications in the cloud
Enhancing Parallelism of Data-Intensive Bioinformatics Applications
增强数据密集型生物信息学应用的并行性
  • DOI:
    10.1109/eurosim.2013.93
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xie Z
  • 通讯作者:
    Xie Z
Augmented Petri Net Cost Model for Optimisation of Large Bioinformatics Workflows Using Cloud
  • DOI:
    10.1109/ems.2013.35
  • 发表时间:
    2013-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng Xie;Liangxiu Han;R. Baldock
  • 通讯作者:
    Zheng Xie;Liangxiu Han;R. Baldock
Parallel data intensive applications using MapReduce: a data mining case study in biomedical sciences
  • DOI:
    10.1007/s10586-014-0405-9
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liangxiu Han;Hwee Yong Ong
  • 通讯作者:
    Liangxiu Han;Hwee Yong Ong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liangxiu Han其他文献

Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI
使用结构 MRI 进行阿尔茨海默病诊断的双重关注多实例深度学习
  • DOI:
    10.1109/tmi.2021.3077079
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Wenyong Zhu;Liang Sun;Jiashuang Huang;Liangxiu Han;Daoqiang Zhang
  • 通讯作者:
    Daoqiang Zhang
Analyzing Gene Expression Imaging Data in Developmental Biology
分析发育生物学中的基因表达成像数据
  • DOI:
    10.1002/9781118540343.ch16
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Liangxiu Han;Jano van Hemert;I. Overton;Paolo Besana;R. Baldock
  • 通讯作者:
    R. Baldock
Supervised Hyperalignment for Multisubject fMRI Data Alignment
用于多主体 fMRI 数据对齐的监督超对齐
The self-adaptation to dynamic failures for efficient virtual organization formations in grid computing context
网格计算环境下高效虚拟组织形成的动态故障自适应
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liangxiu Han
  • 通讯作者:
    Liangxiu Han
The Location Privacy Preserving of Social Network Based on RCCAM Access Control
基于RCCAM访问控制的社交网络位置隐私保护
  • DOI:
    10.1080/02564602.2018.1507767
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Xueqin Zhang;Qianru Zhou;C. Gu;Liangxiu Han
  • 通讯作者:
    Liangxiu Han

Liangxiu Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liangxiu Han', 18)}}的其他基金

Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Research Grant
EYE-SCREEN-4-DPN: Development of an innovative Intelligent EYE imaging solution for SCREENing of Diabetic Peripheral Neuropathy
EYE-SCREEN-4-DPN:开发创新的智能眼部成像解决方案,用于筛查糖尿病周围神经病变
  • 批准号:
    EP/X013707/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Research Grant
UK-China Agritech Challenge: CropDoc - Precision Crop Disease Management for Farm Productivity and Food Security
中英农业科技挑战赛:CropDoc - 精准作物病害管理,提高农业生产力和粮食安全
  • 批准号:
    BB/S020969/1
  • 财政年份:
    2019
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Research Grant
EPIC: An automated diagnostic tool for Potato Late Blight disease detection from images
EPIC:一种从图像检测马铃薯晚疫病的自动化诊断工具
  • 批准号:
    BB/R019983/1
  • 财政年份:
    2018
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Research Grant

相似海外基金

CSR:Medium: A Cross-stack Approach to Reduce Memory Carbon in Cloud Data Centers
CSR:Medium:减少云数据中心内存碳的跨堆栈方法
  • 批准号:
    2312785
  • 财政年份:
    2023
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
CAREER: Argus: A Measurement-informed Learning Approach to Managing Multi-cloud Networks
职业:Argus:管理多云网络的基于测量的学习方法
  • 批准号:
    2145813
  • 财政年份:
    2022
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
SCC-IRG Track 1: Community Based Approach to Address Contaminants in Drinking Water using Smart Cloud-Connected Electrochemical Sensors
SCC-IRG 第 1 轨道:使用智能云连接的电化学传感器解决饮用水中污染物的基于社区的方法
  • 批准号:
    2230180
  • 财政年份:
    2022
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
SCC-PG: Community Based Approach to Address Heavy Metal Contamination in Drinking Water using Cloud-Connected Smart Electrochemical Sensors
SCC-PG:使用云连接的智能电化学传感器解决饮用水中重金属污染的基于社区的方法
  • 批准号:
    1952147
  • 财政年份:
    2020
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
EAGER: Efficient Utilization of FPGAs in HPC Centers and the Cloud: A Software/Hardware Approach
EAGER:在 HPC 中心和云中高效利用 FPGA:软件/硬件方法
  • 批准号:
    1821691
  • 财政年份:
    2018
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
A global approach to analyze the extent of the newly detected Tropical Lowland Cloud Forest (TLCF) based on a large-scale analysis of fog frequency and epiphyte growth, with a special focus on South America
基于对雾频率和附生植物生长的大规模分析,分析新发现的热带低地云林(TLCF)范围的全球方法,特别关注南美洲
  • 批准号:
    386051169
  • 财政年份:
    2018
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Research Grants
An element-agnostic approach to auto-scaling network elements for telco cloud
用于电信云自动扩展网络元素的与元素无关的方法
  • 批准号:
    488453-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Collaborative Research and Development Grants
An Innovative Modeling Approach for Understanding Venus' Cloud-layer Dynamics, Polar Vortices, and the Influence of Waves
用于了解金星云层动力学、极涡和波浪影响的创新建模方法
  • 批准号:
    1614762
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
EAGER: A Sensor Cloud-based Community-Centric Approach for Analyzing and Mitigating Urban Heat Hazards
EAGER:一种基于传感器云、以社区为中心的方法,用于分析和减轻城市热危害
  • 批准号:
    1637277
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
An element-agnostic approach to auto-scaling network elements for telco cloud
用于电信云自动扩展网络元素的与元素无关的方法
  • 批准号:
    488453-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了