A C. elegans whole-brain digital twin
线虫全脑数字双胞胎
基本信息
- 批准号:BB/Z514317/1
- 负责人:
- 金额:$ 32.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Brain research has witnessed remarkable advances in recent decades. And yet, the dynamics of neural circuits, their specification of an animal's behaviours, adaptation to context or internal state, and variability across individuals, remain poorly understood. To integrate neuronal function, circuit-level computation, and brain-wide coordination, whole-brain imaging in freely-behaving animals is essential. While daunting in most animals this technology is available and fast-maturing in the mm-long nematode, C. elegans.Despite its relative simplicity, C. elegans is a freely behaving animal that makes decisions, learns, forgets, adapts to ever-changing conditions, and engages in collective behaviour, in order to survive, forage for food and escape predation. Like all animals, it develops, sleeps and ages, and its study has proved it a powerful model system for neurobiology, neurogenetics, the neural basis of learning, plasticity and behaviour, and neurodegeneration.While the functions of many C. elegans neurons have been studied extensively, understanding the dynamics of larger circuits poses new challenges: whole-brain imaging provides essential observation of neuronal activity, but not the interactions between neurons. We therefore argue that to obtain an integrated understanding at cellular, circuit and global-brain levels requires mechanistic and explanatory models. Such models must account for brain-wide activity that emerges from the neural circuitry, as specified by an animal's connectome. To address this goal, our overall aim is to build the first digital twin of the C. elegans brain.A digital twin is a software representation of a real-world system, used as a model to predict, explain or control the system's response under different conditions. While commonly applied to engineering assets, the methodology, and the challenges (in particular, limited access to the internal working and limited observables of the outputs) suggest important commonalities with whole-brain modelling from data.Specific objectives include:AI: To develop AI tools to train a digital twin, based on whole-brain-activity data constrained by the C. elegans connectome.To apply, test and extend optimisation methods for whole-brain models of individual animals, using brain-wide activity data for >50 animals.To augment whole-brain-data and bootstrap our optimisation methods using deep neural models that learn low-dimensional representations of high-dimensional time-series (i.e. neural activity traces).To unify our framework in order to obtain families of solutions representing clusters of model animals with similar neuronal activation patterns and behavioural encoding.To develop and apply novel AI tools for training populations of models based on populations of datasets, using probabilistic and population density tools.Digital Twin: To develop biologically-grounded mechanistic models of the C. elegans brain, at cellular resolution.To implement neuronal and circuit models with appropriate grounding in C. elegans neurobiology, e.g. the conserved and variable connectome, known synaptic polarities, bilateral symmetry, etc.To test and evaluate optimised models against data and implement post-selection mechanisms for successful solutions, based on biological realism.To apply successful models in simulations to derive predictions for validation experiments and new hypotheses for future research, with focus on understanding distributed encoding and its flexibility, adaptability and variability.If successful, a digital twin will transform our understanding of the C. elegans brain, and hence, the nervous systems of other animals. This project, will put in place AI tools that bring us closer to this goal. The novel AI, and the integration of AI, simulations and complex data, will benefit the construction of other digital twins, across life and engineering sciences.
近几十年来,大脑研究取得了显著进展。然而,神经回路的动力学,它们对动物行为的规范,对环境或内部状态的适应,以及个体之间的变异性,仍然知之甚少。为了整合神经元功能,电路级计算和全脑协调,自由行为动物的全脑成像至关重要。尽管这种技术在大多数动物身上令人望而生畏,但在毫米长的线虫C。elegans。尽管相对简单,C.秀丽线虫是一种行为自由的动物,为了生存、觅食和逃避捕食,它会做出决定、学习、遗忘、适应不断变化的条件,并参与集体行为。与所有动物一样,它也会发育、睡眠和衰老,对它的研究已经证明它是神经生物学、神经遗传学、学习的神经基础、可塑性和行为以及神经变性的一个强有力的模型系统。虽然对线虫神经元的研究已经非常广泛,但理解更大回路的动力学提出了新的挑战:全脑成像提供了对神经元活动的基本观察,但不能观察神经元之间的相互作用。因此,我们认为,要在细胞,电路和全球脑水平上获得综合理解,需要机械和解释模型。这些模型必须解释从神经回路中出现的全脑活动,正如动物的连接体所指定的那样。为了实现这一目标,我们的总体目标是建立第一个C。数字孪生是一个真实世界系统的软件表示,用作模型来预测,解释或控制系统在不同条件下的反应。虽然通常应用于工程资产,但其方法和挑战(特别是,对内部工作的有限访问和输出的有限可观察性)表明了与全脑数据建模的重要共性。具体目标包括:AI:开发AI工具来训练数字孪生模型,基于受C约束的全脑活动数据。为了应用、测试和扩展优化方法用于个体动物的全脑模型,使用>50只动物的全脑活动数据。为了增强全脑数据并使用深度神经模型引导我们的优化方法,该模型学习高维时间序列的低维表示(即神经活动痕迹)统一我们的框架,以获得代表具有相似神经元激活模式和行为编码的模型动物集群的解族。开发和应用新的人工智能工具,用于基于数据集群体训练模型群体,使用概率和人口密度工具。elegans脑,在细胞分辨率。实现神经元和电路模型与适当的接地在C。elegans神经生物学,例如保守和可变的连接体,已知的突触极性,双侧对称性等。根据生物现实主义,测试和评估优化的模型,并实现成功解决方案的后选择机制。将成功的模型应用于模拟,以获得验证实验的预测和未来研究的新假设,重点是理解分布式编码及其灵活性,如果成功,数字孪生将改变我们对C的理解。线虫的大脑,因此,其他动物的神经系统。这个项目将提供人工智能工具,使我们更接近这一目标。新的人工智能,以及人工智能、模拟和复杂数据的集成,将有利于生命科学和工程科学领域其他数字孪生模型的构建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Netta Cohen其他文献
Brain-wide representations of behavior spanning multiple timescales and states in emC. elegans/em
秀丽隐杆线虫行为在多个时间尺度和状态下的全脑表征
- DOI:
10.1016/j.cell.2023.07.035 - 发表时间:
2023-09-14 - 期刊:
- 影响因子:42.500
- 作者:
Adam A. Atanas;Jungsoo Kim;Ziyu Wang;Eric Bueno;McCoy Becker;Di Kang;Jungyeon Park;Talya S. Kramer;Flossie K. Wan;Saba Baskoylu;Ugur Dag;Elpiniki Kalogeropoulou;Matthew A. Gomes;Cassi Estrem;Netta Cohen;Vikash K. Mansinghka;Steven W. Flavell - 通讯作者:
Steven W. Flavell
Size matters: modeling the effects of body shape on locomotive behavior in the nematode C. elegans
- DOI:
10.1186/1471-2202-13-s1-p163 - 发表时间:
2012-07-16 - 期刊:
- 影响因子:2.300
- 作者:
David R Williamson;Netta Cohen - 通讯作者:
Netta Cohen
Understanding plasticity of chemotaxis in C. elegans, a computational model of associative learning
- DOI:
10.1186/1471-2202-13-s1-p162 - 发表时间:
2012-07-16 - 期刊:
- 影响因子:2.300
- 作者:
Tom Sanders;Netta Cohen - 通讯作者:
Netta Cohen
SUPERQUANTUM CORRELATIONS IN NON-LOCAL HIDDEN VARIABLE THEORIES
非局域隐变量理论中的超量子相关性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Netta Cohen;Fay Dowker - 通讯作者:
Fay Dowker
Emergence of synfire chains with triphasic spike-time-dependent plasticity
- DOI:
10.1186/1471-2202-12-s1-p41 - 发表时间:
2011-07-18 - 期刊:
- 影响因子:2.300
- 作者:
Amelia Waddington;Peter A Appleby;Marc deKamps;Netta Cohen - 通讯作者:
Netta Cohen
Netta Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Netta Cohen', 18)}}的其他基金
WHole Animal Modelling (WHAM): Toward the integrated understanding of sensory motor control in C. elegans
整体动物建模(WHAM):全面理解秀丽隐杆线虫的感觉运动控制
- 批准号:
EP/J004057/1 - 财政年份:2011
- 资助金额:
$ 32.86万 - 项目类别:
Fellowship
Amorphous computation, random graphs and complex biological networks
非晶计算、随机图和复杂生物网络
- 批准号:
EP/D00232X/1 - 财政年份:2006
- 资助金额:
$ 32.86万 - 项目类别:
Research Grant
The C. elegans locomotion nervous system: an integrated multi-disciplinary approach
线虫运动神经系统:综合的多学科方法
- 批准号:
EP/C011961/1 - 财政年份:2006
- 资助金额:
$ 32.86万 - 项目类别:
Research Grant
相似国自然基金
氯化有机磷酸酯诱导C.elegans衰老效应及健康风险机制
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
细胞侦测侵袭信号的新方式——膜受体“聚集-消散”动态行为的形成机制研究
- 批准号:81572866
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
杀线虫芽孢杆菌在宿主肠道定殖及相关分子机制的研究
- 批准号:31100104
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
秀丽隐杆线虫14-3-3蛋白在特定组织中调控寿命和应激反应的分子作用机制
- 批准号:31171325
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
犬钩虫中Caenorhabditis elegans daf同源基因的鉴定和功能研究
- 批准号:30972181
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
利用线虫(Caenorhabditis elegans)模型研究14-3-3蛋白在机体抵御逆境因子胁迫过程中的分子作用机制
- 批准号:30771234
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
Actinomucor elegans 肽酶系统及脱苦作用关键酶研究
- 批准号:30770056
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
基于C.elegans的爪哇根结线虫发育相关基因鉴定
- 批准号:30671365
- 批准年份:2006
- 资助金额:32.0 万元
- 项目类别:面上项目
探索线虫的学习记忆异常遗传基因与人类神经精神疾病的相关性
- 批准号:30470552
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
C.elegans异时性基因在寄生线虫体内功能的研究
- 批准号:30470881
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Developing C. elegans as a model to understand tRNA-fragment biogenesis and function
开发线虫作为模型来了解 tRNA 片段的生物发生和功能
- 批准号:
10715193 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
The Next-Generation Developmental and Reproductive Toxicology (DART) Assay using High-Content Analysis of Genetically Diverse C. elegans Populations
使用遗传多样性线虫种群高内涵分析进行下一代发育和生殖毒理学 (DART) 测定
- 批准号:
10326002 - 财政年份:2021
- 资助金额:
$ 32.86万 - 项目类别:
The Next-Generation Developmental and Reproductive Toxicology (DART) Assay using High-Content Analysis of Genetically Diverse C. elegans Populations
使用遗传多样性线虫种群高内涵分析进行下一代发育和生殖毒理学 (DART) 测定
- 批准号:
10738193 - 财政年份:2021
- 资助金额:
$ 32.86万 - 项目类别:
UAB Pilot Center for Precision Animal Modeling (C-PAM) - Coordination Section
UAB 精密动物模型试点中心 (C-PAM) - 协调部分
- 批准号:
10477302 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
UAB Pilot Center for Precision Animal Modeling (C-PAM) - Coordination Section
UAB 精密动物模型试点中心 (C-PAM) - 协调部分
- 批准号:
10260615 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
UAB Pilot Center for Precision Animal Modeling (C-PAM)
UAB 精密动物建模试点中心 (C-PAM)
- 批准号:
10793200 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
Automated platform for high-throughput genetic analyses in C. elegans
用于线虫高通量遗传分析的自动化平台
- 批准号:
10382437 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
Automated platform for high-throughput genetic analyses in C. elegans
用于线虫高通量遗传分析的自动化平台
- 批准号:
10599857 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
C. Elegans as a Model of Cell Senescence and Alzheimer's Disease
C. 线虫作为细胞衰老和阿尔茨海默病的模型
- 批准号:
10261332 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
Automated platform for high-throughput genetic analyses in C. elegans
用于线虫高通量遗传分析的自动化平台
- 批准号:
10161875 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别: