Extensions to compressed sensing theory with application to dynamic MRI
压缩感知理论的扩展及其在动态 MRI 中的应用
基本信息
- 批准号:EP/F039697/1
- 负责人:
- 金额:$ 66.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of data acquisition or sampling lies at the heart of digital signal processing. It has been a long held belief that one should acquire a sufficient number of samples to satisfy the so-called Nyquist criterion. Then the discretely sampled signal is an equivalent representation of the original analogue one. However, recently, the paradigm of compressed sensing has challenged this idea. If a signal is known to have structure, and almost all signals do, then this can be used to reduce the number of samples required to define the signal; compressed sensing advocates sampling at the information rate not the Nyquist rate . This project aims to extend the existing theory of compressed sensing to include more general advanced signal models and, in particular, multi-resolution image models. These ideas should have a big impact on problems where sampling data is difficult either because it is time consuming, expensive or has associated safety issues (e.g. patient exposure to electromagnetic radiation). The project will further explore the potential of compressed sensing as a novel compression strategy for possible use in distributed or remote sensing applications. The project will use these ideas to develop new rapid Magnetic Resonance Imaging (MRI) acquisition systems. The advantages of accelerated scan times are manifold. It enables clinicians to take higher resolution scans and to acquire more detailed dynamic image sequences (e.g. for cardiac diagnosis). Furthermore, with the trend to the increased use of high field scanners reducing the samples for a given image acquisition has the additional benefit of lowering the RF exposure that the patient is subjected to.
数据采集或采样问题是数字信号处理的核心问题。长期以来,人们一直认为,一个人应该获得足够数量的样本,以满足所谓的奈奎斯特标准。则离散采样的信号是原始模拟信号的等价表示。然而,最近,压缩传感的范例对这一想法提出了挑战。如果已知信号具有结构,并且几乎所有信号都具有结构,则可以利用这一点来减少定义信号所需的样本数量;压缩传感提倡以信息速率而不是奈奎斯特速率进行采样。这个项目旨在扩展现有的压缩感知理论,以包括更一般的高级信号模型,特别是多分辨率图像模型。这些想法应该会对采样数据困难的问题产生重大影响,因为采样数据既耗时、昂贵,又有相关的安全问题(例如患者暴露在电磁辐射中)。该项目将进一步探讨压缩传感作为一种可能用于分布式或遥感应用的新的压缩战略的潜力。该项目将利用这些想法开发新的快速磁共振成像(MRI)采集系统。加速扫描时间的优势是多方面的。它使临床医生能够进行更高分辨率的扫描,并获得更详细的动态图像序列(例如,用于心脏诊断)。此外,随着越来越多地使用高场扫描仪,减少特定图像采集的样本具有降低患者遭受的射频暴露的额外好处。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Greedy-like algorithms for the cosparse analysis model
- DOI:10.1016/j.laa.2013.03.004
- 发表时间:2012-07
- 期刊:
- 影响因子:1.1
- 作者:R. Giryes;Sangnam Nam;Michael Elad;R. Gribonval;M. Davies
- 通讯作者:R. Giryes;Sangnam Nam;Michael Elad;R. Gribonval;M. Davies
Detection and segmentation of fmcw radar signals based on the chirplet transform
- DOI:10.1109/icassp.2011.5946844
- 发表时间:2011-05
- 期刊:
- 影响因子:0
- 作者:F. Millioz;M. Davies
- 通讯作者:F. Millioz;M. Davies
Iterative hard thresholding for compressed sensing
- DOI:10.1016/j.acha.2009.04.002
- 发表时间:2009-11-01
- 期刊:
- 影响因子:2.5
- 作者:Blumensath, Thomas;Davies, Mike E.
- 通讯作者:Davies, Mike E.
Radiological and quantitative assessment of Compressed Sensing reconstruction of undersampled 3D brain images
欠采样 3D 脑图像压缩感知重建的放射学和定量评估
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Ian Marshall
- 通讯作者:Ian Marshall
Sample-distortion functions for compressed sensing
- DOI:10.1109/allerton.2011.6120262
- 发表时间:2011-09
- 期刊:
- 影响因子:0
- 作者:M. Davies;Chunli Guo
- 通讯作者:M. Davies;Chunli Guo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mike Davies其他文献
Equivariant Imaging for Self-supervised Hyperspectral Image Inpainting
自监督高光谱图像修复的等变成像
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shuo Li;Mike Davies;Mehrdad Yaghoobi - 通讯作者:
Mehrdad Yaghoobi
Response to Commentary Improving Inpatient Flow and Efficiency in the VA Health Care System : Research Opportunities
对改善 VA 医疗保健系统住院流程和效率的评论的回应:研究机会
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mike Davies - 通讯作者:
Mike Davies
Factors predictive of wound infection in a colorectal unit. A case-control study
- DOI:
10.1016/j.ijsu.2013.06.193 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:
- 作者:
Catherine Power;Mike Davies;Rachel Hargest;Simon Phillips;Chris Morris - 通讯作者:
Chris Morris
Safety and Yield of Exhaled Breath Condensate Analysis in Acutely Ill, Mechanically Ventilated Infants with RSV Bronchiolitis
患有 RSV 毛细支气管炎的急性机械通气婴儿呼出气冷凝物分析的安全性和产量
- DOI:
10.26717/bjstr.2020.25.004198 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
R. Siddaiah;D. Kitch;Mike Davies;H. Rao;Binu;P. Mondal;E. Halstead;G. Graff;Z. Chroneos - 通讯作者:
Z. Chroneos
Cool Cities by Design: Shaping a Healthy and Equitable London in a Warming Climate
设计酷城市:在气候变暖的情况下塑造健康公平的伦敦
- DOI:
10.1007/978-3-030-87598-5_4 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Mavrogianni;Jonathon Taylor;P. Symonds;E. Oikonomou;H. Pineo;N. Zimmermann;Mike Davies - 通讯作者:
Mike Davies
Mike Davies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mike Davies', 18)}}的其他基金
Signal Procssing in the Information Age
信息时代的信号处理
- 批准号:
EP/S000631/1 - 财政年份:2018
- 资助金额:
$ 66.54万 - 项目类别:
Research Grant
Compressive Imaging for Radio Interferometry
无线电干涉测量的压缩成像
- 批准号:
EP/M008916/1 - 财政年份:2015
- 资助金额:
$ 66.54万 - 项目类别:
Research Grant
Signal Processing 4 the Networked Battlespace
信号处理 4 网络化战场
- 批准号:
EP/K014277/1 - 财政年份:2013
- 资助金额:
$ 66.54万 - 项目类别:
Research Grant
Source Separation for Electronic Surveillance
电子监控源分离
- 批准号:
EP/H012397/1 - 财政年份:2009
- 资助金额:
$ 66.54万 - 项目类别:
Research Grant
Sparse Representations for Signal Processing and Coding
信号处理和编码的稀疏表示
- 批准号:
EP/D000246/2 - 财政年份:2006
- 资助金额:
$ 66.54万 - 项目类别:
Research Grant
相似国自然基金
基于压缩传感理论的高时空分辨率动态磁共振成像关键技术研究
- 批准号:30900328
- 批准年份:2009
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sparsity-Based Autonomous Adaptability in Circuit and Systems Utilizing Compressed Sensing
利用压缩感知的电路和系统中基于稀疏性的自主适应性
- 批准号:
23K18463 - 财政年份:2023
- 资助金额:
$ 66.54万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
PhD in Compressed Sensing for Egocentric Video
自我中心视频压缩感知博士
- 批准号:
2894973 - 财政年份:2023
- 资助金额:
$ 66.54万 - 项目类别:
Studentship
Compressed sensingを用いた正確な口腔癌深達度の三次元的取得
利用压缩传感精确三维获取口腔癌浸润深度
- 批准号:
22K10174 - 财政年份:2022
- 资助金额:
$ 66.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
- 批准号:
10674616 - 财政年份:2022
- 资助金额:
$ 66.54万 - 项目类别:
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2022
- 资助金额:
$ 66.54万 - 项目类别:
Discovery Grants Program - Individual
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
- 批准号:
10527816 - 财政年份:2022
- 资助金额:
$ 66.54万 - 项目类别:
Compressed sensing for medical applications
医疗应用的压缩传感
- 批准号:
EP/W015412/1 - 财政年份:2022
- 资助金额:
$ 66.54万 - 项目类别:
Research Grant
Development of EEG Measurement Circuit System by Compressed Sensing Using Random Sampling
利用随机采样的压缩感知开发脑电图测量电路系统
- 批准号:
21H03410 - 财政年份:2021
- 资助金额:
$ 66.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
- 批准号:
2131115 - 财政年份:2021
- 资助金额:
$ 66.54万 - 项目类别:
Standard Grant
Development of high-speed coronary MRA imaging method using compressed sensing
利用压缩感知开发高速冠状动脉MRA成像方法
- 批准号:
21K07621 - 财政年份:2021
- 资助金额:
$ 66.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)