Quantitative Theory for Polyelectrolyte and Liquid-Crystalline Brushes

聚电解质和液晶刷的定量理论

基本信息

  • 批准号:
    EP/F068425/1
  • 负责人:
  • 金额:
    $ 31.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Polymeric brushes refer to surfaces densely coated with polymer molecules, each attached to the surface by one of their ends. Brushes offer an easy and versatile way of modifying surface properties, such as friction, adhesion and wetting behaviour. The rich selection of polymeric materials with which this can be done provides a diverse range of surface coatings. With new synthetic techniques it is now becoming possible to create brushes of impressive precision and ever increasing complexity, and likewise state-of-the-art experiments are able to measure their properties with unprecedented detail. On the other hand, brush theories have advanced very little over the last couple decades. To keep pace with experiments, the present proposal aims to develop advanced theories with the capability of making accurate quantitative predictions.Much of the proposed research will focus on polyelectrolyte brushes in which the polymer chains become electrically charged. One of their most intriguing properties is the ultra-small (almost unmeasurable) friction that occurs when two opposing brushes slide past each other, even when they are pushed against each other at a pressure of several atmospheres. It seems that nature itself makes use of this property by coating the outer cartilage surface of mammalian joints with biological polyelectrolyte polymers. Thus one could imagine doing the same with artificial hip or knee joints. Polyelectrolyte brushes also have another useful property that they can spontaneously switch from an extended state to a collapsed state; this has a number of potential applications in the emerging field of nano-technology, which involves the building of ultra-small devices. For instance, this transition can be used to create small motors (i.e., actuators) or to open and close (i.e., gate) small porous membranes. The transition can be induced by changes in temperature, the pH (for brushes immersed in water), or by the application of an external electric field.This research will also investigate the behaviour of liquid-crystalline brushes, where the polymer chains have small mesogen units attached along their length. Potential uses include smart responsive surfaces with electro-optic, mechano-optic and electro-mechanic behaviours. There is also a theoretical calculation predicting that the alignment of the mesogens units can cause the brush to collapse, causing an analogous transition to that of the polyelectrolyte brushes with similar potential applications. Again, we should be able to induce the transition by changing temperature or by applying an electric field. There are also good reasons to believe that liquid-crystalline brushes will have superior properties for liquid-crystal displays (LCD's), and they may also provide important components for organic semi-conductors.
聚合物刷指的是用聚合物分子密集涂覆的表面,每个聚合物分子通过其一端附接到表面。刷子提供了一种简单而通用的方式来改变表面特性,如摩擦力、附着力和润湿性能。可用于此的聚合物材料的丰富选择提供了各种各样的表面涂层。随着新的合成技术,现在有可能创造出令人印象深刻的精度和不断增加的复杂性的刷子,同样,最先进的实验能够以前所未有的细节测量它们的属性。另一方面,在过去的几十年里,画笔理论几乎没有什么进展。为了跟上实验的步伐,目前的建议旨在发展先进的理论,使准确的定量预测的能力。许多拟议的研究将集中在刷的聚合物链成为带电。它们最有趣的特性之一是当两个相对的刷子相互滑动时发生的超小(几乎不可测量)摩擦,即使它们在几个大气压的压力下相互推动。似乎大自然本身就利用了这一特性,在哺乳动物关节的软骨外表面涂上了生物聚合物。因此,人们可以想象用人工髋关节或膝关节做同样的事情。聚电解质刷还具有另一个有用的特性,即它们可以自发地从伸展状态切换到塌陷状态;这在新兴的纳米技术领域具有许多潜在的应用,其中涉及超小型设备的构建。例如,这种转变可以用于制造小型电动机(即,致动器)或打开和关闭(即,门)小的多孔膜。这种转变可以通过温度、pH值(对于浸入水中的刷)或外部电场的变化来诱导,本研究还将研究液晶刷的行为,其中聚合物链具有沿其长度沿着连接的小液晶基元单元。潜在的用途包括具有电光、机械光和机电行为的智能响应表面。也有一个理论计算预测,液晶基元单元的排列可以导致刷崩溃,导致类似的过渡到具有类似潜在应用的刷。同样,我们应该能够通过改变温度或施加电场来诱导转变。也有充分的理由相信,液晶刷将具有用于液晶显示器(LCD)的上级特性,并且它们还可以提供用于有机半导体的重要组件。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Matsen其他文献

Mark Matsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Matsen', 18)}}的其他基金

The Effects of Polydispersity on Self Assembly in Block Copolymers.
多分散性对嵌段共聚物自组装的影响。
  • 批准号:
    EP/E010342/1
  • 财政年份:
    2007
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Research Grant
SCFT algorithms for polymeric systems with axial symmetry, and applications to colloids, micelles, and nanocomposites
适用于轴对称聚合物系统的 SCFT 算法及其在胶体、胶束和纳米复合材料中的应用
  • 批准号:
    EP/D031494/1
  • 财政年份:
    2006
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Studentship
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
  • 批准号:
    DP240101511
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Research Grant
Billiard Field Theory
台球场论
  • 批准号:
    EP/Y023005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 31.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了