Combined experimental and computational investigations of a nucleophilic displacement reaction with a hydride leaving group

氢化物离去基团亲核置换反应的实验和计算相结合的研究

基本信息

  • 批准号:
    EP/G002843/1
  • 负责人:
  • 金额:
    $ 35.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

All of biology - life itself - depends on enzymes. Enzymes are large, natural molecules that allow specific biochemical reactions to take place quickly, that is to say enzymes are natural catalysts. They are very good catalysts, but as yet we do not understand what it is that makes them such good natural chemists. We need to know how chemical reactions happen in enzymes, something that is very difficult to do by experiments alone. There are many reasons for studying enzymes and the reactions they catalyse: many drugs are enzyme inhibitors (they stop specific enzymes from working), so better understanding of enzymes will help in the design of new drugs. Better understanding of individual enzymes should also help understand and predict the effects of genetic variation, for example in understanding why some people may benefit from a particular drug, or may be at risk from a disease. Enzymes are also very good and environmentally friendly catalysts - knowing how they function should help in the design and development of new 'green' catalysts for forensic, synthetic, analytical and biotechnological applications. Enzymes also show great promise as 'molecular machines' in the emerging field of nanotechnology. We will carry out a collaborative project bringing together experimental biochemistry with advanced computer modelling methods to analyse in detail how a remarkable enzyme works. This enzyme catalyses an unusual reaction, and is used in industrial applications, but it could be improved by making it more efficient, which we hope to do by designing changes to it. We will predict the effects of changes to the enzyme (mutations) by modelling, and test our predictions experimentally. We will develop and apply new high-level modelling methods, capable of dealing accurately with these large and complex systems, and the chemical reactions they catalyse. Carrying out experiments and modelling together will help develop the methods, by testing them predictions, and will also help in interpreting biochemical results and planning new experiments (e.g. designing altered enzymes). We will focus on phosphite dehydrogenase, an enzyme that catalyses a chemically unique reaction that so far has eluded detailed mechanistic understanding. Current computer modelling methods are useful for studying some aspects of enzyme reactions - they offer the unique potential of making molecular 'movies' of how enzymes work - but have important limitations. For example, large size of enzymes, and the need for intensive calculations, means that current calculations are typically limited to approximate and often unreliable computational methods. Reliable predictions of enzyme catalytic mechanisms require more accurate techniques. We will extend high-level methods, previously validated in studies of chemical reactions of small molecules, to study reactions in enzymes. We will develop new, hybrid methods that can describe the energies of breaking and forming chemical bonds well, and analyse how the reaction is affected by the dynamics of the enzyme. This work will be carried out in collaboration with experimental studies. The experimental data will be essential input for the calculations. We will make predictions and compare with experiments on the same enzyme to test our theoretical methods, use molecular models to analyse and interpret experimental data and test hypotheses about the enzyme reaction mechanism. This collaboration will involve the transfer and exchange of methods, data, ideas and researchers between our labs. The new methods we develop will be made widely available, and should be very useful to biologists, biochemists and other researchers working on biological catalysis.
所有的生物--生命本身--都依赖于酶。酶是大的天然分子,可以使特定的生化反应快速发生,也就是说酶是天然催化剂。它们是非常好的催化剂,但我们至今还不明白是什么使它们成为如此好的天然化学家。我们需要知道酶中的化学反应是如何发生的,这是很难通过实验来完成的。研究酶及其催化的反应有很多原因:许多药物是酶抑制剂(它们阻止特定的酶工作),因此更好地了解酶将有助于新药的设计。更好地了解单个酶也应该有助于理解和预测遗传变异的影响,例如理解为什么有些人可能从某种特定药物中受益,或者可能有疾病的风险。酶也是非常好的环境友好型催化剂-了解它们的功能有助于设计和开发新的“绿色”催化剂,用于法医,合成,分析和生物技术应用。酶在新兴的纳米技术领域也显示出作为“分子机器”的巨大潜力。我们将开展一个合作项目,将实验生物化学与先进的计算机建模方法结合起来,详细分析一种非凡的酶是如何工作的。这种酶催化一种不寻常的反应,并用于工业应用,但它可以通过提高效率来改进,我们希望通过设计改变它来做到这一点。我们将通过建模预测酶变化(突变)的影响,并通过实验验证我们的预测。我们将开发和应用新的高级建模方法,能够准确处理这些大型复杂系统以及它们催化的化学反应。同时进行实验和建模将有助于通过测试预测来发展方法,也有助于解释生化结果和规划新的实验(例如设计改变的酶)。我们将集中在亚磷酸脱氢酶,一种酶,催化一个化学独特的反应,到目前为止,一直逃避详细的机制的理解。目前的计算机建模方法对于研究酶反应的某些方面是有用的-它们提供了制作酶如何工作的分子“电影”的独特潜力-但具有重要的局限性。例如,酶的大尺寸和对密集计算的需要意味着当前的计算通常限于近似的并且通常不可靠的计算方法。酶催化机制的可靠预测需要更精确的技术。我们将扩展以前在小分子化学反应研究中验证的高级方法,以研究酶中的反应。我们将开发新的混合方法,可以很好地描述断裂和形成化学键的能量,并分析反应如何受到酶动力学的影响。这项工作将与实验研究合作进行。实验数据将是计算的基本输入。我们将进行预测并与相同酶的实验进行比较,以测试我们的理论方法,使用分子模型分析和解释实验数据,并测试有关酶反应机制的假设。这种合作将涉及我们实验室之间的方法,数据,想法和研究人员的转移和交流。我们开发的新方法将被广泛使用,对生物学家、生物化学家和其他从事生物催化研究的研究人员来说应该非常有用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entropy of Simulated Liquids Using Multiscale Cell Correlation.
  • DOI:
    10.3390/e21080750
  • 发表时间:
    2019-07-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali HS;Higham J;Henchman RH
  • 通讯作者:
    Henchman RH
Relative Affinities of Protein-Cholesterol Interactions from Equilibrium Molecular Dynamics Simulations.
  • DOI:
    10.1021/acs.jctc.1c00547
  • 发表时间:
    2021-10-12
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Ansell TB;Curran L;Horrell MR;Pipatpolkai T;Letham SC;Song W;Siebold C;Stansfeld PJ;Sansom MSP;Corey RA
  • 通讯作者:
    Corey RA
New methods: general discussion.
新方法:一般性讨论。
  • DOI:
    10.1039/c6fd90075e
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Angulo G
  • 通讯作者:
    Angulo G
Biomolecular Simulations in the Time of COVID19, and After.
  • DOI:
    10.1109/mcse.2020.3024155
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Amaro RE;Mulholland AJ
  • 通讯作者:
    Mulholland AJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Mulholland其他文献

QM/MM Study on Cleavage Mechanism Catalyzed by Zika Virus NS2B/NS3 Serine Protease
  • DOI:
    10.1016/j.bpj.2018.11.3005
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Bodee Nutho;Adrian Mulholland;Thanyada Rungrotmongkol
  • 通讯作者:
    Thanyada Rungrotmongkol

Adrian Mulholland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Mulholland', 18)}}的其他基金

Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
  • 批准号:
    EP/W013738/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
BEORHN: Bacterial Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟进行硝化反应中活性羟胺的细菌酶氧化
  • 批准号:
    BB/V016768/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
Commercialisation of VR for biomolecular design
用于生物分子设计的 VR 商业化
  • 批准号:
    BB/T017066/1
  • 财政年份:
    2020
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
CCP-BioSim: Biomolecular Simulation at the Life Sciences Interface
CCP-BioSim:生命科学界面的生物分子模拟
  • 批准号:
    EP/M022609/1
  • 财政年份:
    2015
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
Predicting drug-target binding kinetics through multiscale simulations
通过多尺度模拟预测药物靶标结合动力学
  • 批准号:
    EP/M015378/1
  • 财政年份:
    2015
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
BristolBridge: Bridging the Gaps between the Engineering and Physical Sciences and Antimicrobial Resistance
BristolBridge:弥合工程和物理科学与抗菌素耐药性之间的差距
  • 批准号:
    EP/M027546/1
  • 财政年份:
    2015
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
Computational tools for enzyme engineering: bridging the gap between enzymologists and expert simulation
酶工程计算工具:弥合酶学家和专家模拟之间的差距
  • 批准号:
    BB/L018756/1
  • 财政年份:
    2014
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
The UK High-End Computing Consortium for Biomolecular Simulation
英国生物分子模拟高端计算联盟
  • 批准号:
    EP/L000253/1
  • 财政年份:
    2013
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
Inquire: Software for real-time analysis of binding
查询:实时分析结合的软件
  • 批准号:
    BB/K016601/1
  • 财政年份:
    2013
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
CCP-BioSim: Biomolecular simulation at the life sciences interface
CCP-BioSim:生命科学界面的生物分子模拟
  • 批准号:
    EP/J010588/1
  • 财政年份:
    2011
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant

相似国自然基金

TXNIP调控实验性青光眼视乳头星形胶质细胞的激活及其机制研究
  • 批准号:
    82371048
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
GLS1通过α-KG调控表观遗传修饰在实验性近视巩膜重塑中的作用机制
  • 批准号:
    82371092
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
多发性硬化相关microRNA和靶基因鉴定及其对Th17和Treg细胞生成及分化的作用
  • 批准号:
    81171120
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Studentship
Combined In vitro Experimental and Computational Approaches for Predicting the Identity and Behaviour of Protein Corona-Adsorbed Nanoparticles
结合体外实验和计算方法来预测蛋白质电晕吸附纳米颗粒的特性和行为
  • 批准号:
    RGPIN-2020-05679
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Discovery Grants Program - Individual
Deficits of the Early Visual System in Schizophrenia, a Combined Psychophysical, Computational, and Neuroimaging Approach
精神分裂症早期视觉系统的缺陷,综合心理物理学、计算和神经影像学方法
  • 批准号:
    10447941
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
Deficits of the Early Visual System in Schizophrenia, a Combined Psychophysical, Computational, and Neuroimaging Approach
精神分裂症早期视觉系统的缺陷,综合心理物理学、计算和神经影像学方法
  • 批准号:
    10697353
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
CAJAL: A computational framework for the combined morphometric, transcriptomic, and physiological analysis of cells
CAJAL:细胞形态学、转录组学和生理学综合分析的计算框架
  • 批准号:
    10509196
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
A combined experimental and computational approach for the rational synthesis of rotaxanes as 'smart' drug delivery systems
合理合成轮烷作为“智能”药物输送系统的实验和计算相结合的方法
  • 批准号:
    2896287
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Studentship
Harnessing Electrostatics to Unlock Cage Catalysis: A Combined Experimental Computational Approach
利用静电解锁笼催化:组合实验计算方法
  • 批准号:
    EP/W009803/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Research Grant
Enabling stratification of intervertebral disc repair with a combined experimental and computational approach
通过实验和计算相结合的方法实现椎间盘修复的分层
  • 批准号:
    2599049
  • 财政年份:
    2021
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Studentship
A pan-cancer atlas of driver mutations in >100,000 patients based on a hypothesis-driven combined computational and experimental approach
基于假设驱动的计算和实验相结合的方法,绘制了超过 100,000 名患者的驱动突变泛癌图谱
  • 批准号:
    10620844
  • 财政年份:
    2021
  • 资助金额:
    $ 35.87万
  • 项目类别:
Combined In vitro Experimental and Computational Approaches for Predicting the Identity and Behaviour of Protein Corona-Adsorbed Nanoparticles
结合体外实验和计算方法来预测蛋白质电晕吸附纳米颗粒的特性和行为
  • 批准号:
    RGPIN-2020-05679
  • 财政年份:
    2021
  • 资助金额:
    $ 35.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了