A pan-cancer atlas of driver mutations in >100,000 patients based on a hypothesis-driven combined computational and experimental approach
基于假设驱动的计算和实验相结合的方法,绘制了超过 100,000 名患者的驱动突变泛癌图谱
基本信息
- 批准号:10620844
- 负责人:
- 金额:$ 21.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdvanced Malignant NeoplasmAffectAlgorithmsAtlasesBindingBiologicalBiologyCRISPR interferenceCancer PatientCellsChromatin Remodeling FactorClinicalClinical MarkersClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexComputer softwareComputing MethodologiesDataData SetDevelopmentDevelopment PlansDrug TargetingEnvironmentEstrogensEventFoundationsFutureGenesGenetics and MedicineGenetsGenomeGenomicsGoalsImmunotherapyIndividualLeadershipMalignant NeoplasmsManualsMapsMedicineMentorsMethodsMissionModelingMutationOncogenicOpen Reading FramesOutcomePathologic MutagenesisPathway interactionsPatientsPublic HealthPublicationsResearchRoleScientistSignal TransductionSolidSomatic MutationStatistical MethodsStatistical ModelsStructureSystemTechniquesTestingThe Cancer Genome AtlasTrainingUnited States National Institutes of HealthUntranslated RNAbase editingcancer gene expressioncancer genomecancer genomicscancer survivalcancer therapycancer typecareer developmentclinical careclinical predictorscomputerized toolsdriver mutationexomeexperienceexperimental studygenome editinggenome sequencinggenomic biomarkerimprovedinnovationinterdisciplinary approachmachine learning methodmalignant breast neoplasmmathematical methodsmathematical modelmedical schoolsmeetingsmid-career facultynew therapeutic targetnovelnovel therapeuticsopen sourceprecision oncologyprofessorpromoterskillssymposiumtargeted treatmenttooltranscription factortumortumor diagnostictumorigenesiswhole genome
项目摘要
PROJECT SUMMARY
Most mutations in cancer genomes are random passengers that do not contribute to oncogenesis, whereas
only a few are drivers critical for tumor development. Existing cancer therapies interfere directly with the
biology of drivers, which have been characterized extensively in protein-coding regions but remain largely
uncharacterized outside coding regions. Most tumors harbor a combination of several driver mutations, but it is
unclear how multiple events are coordinated in tumor development. The applicant's long-term goal is to
advance cancer medicine by identifying new drug targets and clinical markers for therapies in complex
pathways. The overall objectives in this application are to (i) reveal the biological role of noncoding drivers, (ii)
capture the coordination of driver events at a pathway level, and (iii) profile the effects of noncoding drivers on
cancer gene expression. The central hypothesis is that refining the biological assumptions of computational
methods will enhance their statistical power. The rationale is that defining the biology of noncoding drivers and
their combination will offer a strong foundation for new therapies. The central hypothesis will be tested in three
specific aims: 1) Determine the impact of integrating biological mechanisms into statistical methods for
localizing noncoding drivers; 2) Evaluate mechanisms by which promoter mutations increase the expression of
cancer genes; and 3) Assess the coordination of multiple driver events in tumor development. The proposed
research is innovative, in the applicant's opinion, because it will allow for an unbiased characterization of driver
mutations across the entire genome, address the limitations of existing cancer genomics methods in noncoding
regions, and facilitate the usage of statistical concepts for non-computational scientists. The proposal is
significant because it will enable a systematic interrogation of noncoding drivers and their combinations.
Ultimately, this will pave the way for new targeted therapies. Dr. Dietlein will be mentored by Dr. Van Allen, an
Associate Professor of Medicine at Harvard Medical School with considerable experience in cancer genomics
methods that require statistical innovation for clinically focused questions. His co-mentor, Dr. Meyerson, is a
Professor of Genetics and Medicine at Harvard Medical School and a pioneer in developing targeted therapies
based on driver mutations. Additional support will be provided by 4 computational and 2 experimental
collaborators. Dr. Dietlein's training plan contains four goals, which will be pursued by hands-on experiential
training, conference meetings, and structured coursework: 1) Acquire computational skills for interpreting
drivers in noncoding regions; 2) Experimental techniques to validate driver mutations by CRISPR interference;
3) Develop professional leadership skills for interdisciplinary teams of scientists; and 4) Use machine-learning
methods for interpreting drivers in cancer genomes. Dana-Farber, Harvard Medical School, and the Broad
Institute provide an ideal environment to execute the applicant's career development plan.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Felix Dietlein其他文献
Felix Dietlein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Felix Dietlein', 18)}}的其他基金
Defining the universal genomic language of hallmarks in tumor development
定义肿瘤发展标志的通用基因组语言
- 批准号:
10681670 - 财政年份:2023
- 资助金额:
$ 21.45万 - 项目类别:
A pan-cancer atlas of driver mutations in >100,000 patients based on a hypothesis-driven combined computational and experimental approach
基于假设驱动的计算和实验相结合的方法,绘制了超过 100,000 名患者的驱动突变泛癌图谱
- 批准号:
10276520 - 财政年份:2021
- 资助金额:
$ 21.45万 - 项目类别:
A pan-cancer atlas of driver mutations in >100,000 patients based on a hypothesis-driven combined computational and experimental approach
基于假设驱动的计算和实验相结合的方法,绘制了超过 100,000 名患者的驱动突变泛癌图谱
- 批准号:
10617428 - 财政年份:2021
- 资助金额:
$ 21.45万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant














{{item.name}}会员




