Phase Space Analysis of Evolution Equations

演化方程的相空间分析

基本信息

  • 批准号:
    EP/G007233/1
  • 负责人:
  • 金额:
    $ 71.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The main purpose of the proposed research is to analyse global space time properties of dispersive partial differential equations. There are several aspects of such analysis. First, the global analysis of linear equations is crucial in both local and global problems for nonlinear evolution equations. Second, in global problems one finds many important relations between problems in partial differential equations (PDEs) and the underlying geometry. Equations under consideration include hyperbolic equations, hyperbolic systems with or without multiplicities, single and coupled Schrodinger type equations, relativistic equations, Klein-Gordon, KdV and many others. Such equations are all called dispersive equations because there are many similarities in the behaviour of their solutions exhibiting instances of the so-called dispersion (of energy, moments, singularities, or of other information).Local qualitative properties of linear equations have been studied for decades with many important and fascinating discoveries. However, for their nonlinear versions one needs global quantitative information on the behaviour of linearised equations, and here almost no results are available in general. The proposed project suggests a new unified approach to these problems based on the new area of ``global microlocal analysis'' which deals with global properties of so-called Fourier integral operators (FIOs) and which allows to go far beyond the known spectral and other methods.These operators (FIOs) have been used in the local theories for over 35 years and proved to be very efficient since they encode many analytic and geometric properties of equations. For example, solutions to Cauchy problems for hyperbolic equations, transformations operators between different types of dispersive equations, etc., can all be reduced to the form of Fourier integral operators or their relevant extensions. The first aim of this project is to analyse required global (space and time) properties of Fourier integral type operators. These properties have been successfully studied so far in a number of special cases only under very restrictive conditions on the operator (partly because they were not realised in the form of FIOs). However, recent research indicates that it should be possible to treat the general case of nondegenerate Fourier integral operators by combining recent developments in the local regularity theory with new approaches for establishing global estimates. Global estimates for these operators are of crucial importance for nonlinear problems but were largely unapproachable in the past.It is expected that the new approach described in this proposal will allow me to deal with equations with variable coefficients which is nowadays one of the main challenges of the whole area. Present methods coming from spectral theory or from harmonic analysis generally fail when dealing with variable coefficients. At the same time the approach that I propose here is very well suited for it. In fact, already for some classes of equations it allowed to recover and improve most of the results that can be obtained with other approaches, and go far beyond!Another part of the project is to use all this as well as other recently discovered ideas and techniques to investigate dispersive, Strichartz, and smoothing estimates for dispersive equations with variable coefficients and lower order terms, and relations between them. The obtained results will be applied to local and global well-posedness questions of nonlinear hyperbolic, Schrodinger and other dispersive equations.It is important and challenging research with deep implications in theories of linear and nonlinear dispersive equations and their relation to geometry and other areas. The research will be undertaken at the Mathematics Department of Imperial College, while collaboration with other mathematicians on some aspects of this project is expected.
本文的主要目的是研究色散偏微分方程的全局时空性质。这种分析有几个方面。首先,线性方程组的整体分析在非线性发展方程的局部和整体问题中都是至关重要的。第二,在整体问题中,人们发现偏微分方程(PDE)问题与基本几何之间存在许多重要关系。考虑的方程包括双曲方程,双曲系统有或没有多重性,单一和耦合薛定谔型方程,相对论方程,克莱因-戈登,KdV和许多其他。这些方程都被称为色散方程,因为它们的解的行为有许多相似之处,表现出所谓的色散(能量,矩,奇点或其他信息)。线性方程的局部定性性质已经研究了几十年,有许多重要和迷人的发现。然而,对于它们的非线性版本,人们需要关于线性化方程行为的全局定量信息,并且这里几乎没有结果。拟议的项目提出了一种新的统一办法来解决这些问题,其基础是“全球微局部分析”这一新领域,该领域处理所谓傅立叶积分算子的全球性质,并允许远远超出已知的谱和其他方法。已经被用于局部理论超过35年,并被证明是非常有效的,因为它们编码了方程的许多解析和几何性质。例如,双曲型方程柯西问题的解、不同类型色散方程之间的变换运算符等,都可以归结为傅里叶积分算子或其相关的扩展形式。该项目的第一个目的是分析所需的整体(空间和时间)的傅立叶积分型运营商的属性。这些属性已经成功地研究到目前为止,在一些特殊情况下,只有在非常严格的条件下,对运营商(部分原因是他们没有实现的形式FIO)。然而,最近的研究表明,它应该是可能的治疗一般情况下的非退化傅立叶积分算子相结合的局部正则性理论的最新发展与新的方法建立全球估计。这些运营商的全球估计是至关重要的非线性问题,但在很大程度上是不可接近的在过去,预计在这个建议中所描述的新方法将允许我处理的变系数方程,这是当今整个地区的主要挑战之一。目前的方法来自频谱理论或谐波分析通常失败时,处理变系数。与此同时,我在这里提出的方法非常适合它。事实上,对于某些类型的方程,它已经允许恢复和改进可以用其他方法获得的大部分结果,并且远远超出!该项目的另一部分是使用所有这些以及其他最近发现的想法和技术来研究具有变系数和低阶项的色散方程的色散,Eschhartz和平滑估计,以及它们之间的关系。所得结果将应用于非线性双曲型、Schrodinger等色散方程的局部和整体适定性问题,对线性和非线性色散方程的理论及其与几何和其他领域的关系具有重要意义和挑战性.这项研究将在帝国理工学院数学系进行,预计将与其他数学家就该项目的某些方面进行合作。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Schatten classes on compact manifolds: Kernel conditions
紧致流形上的 Schatten 类:核条件
Erratum to "The Gohberg Lemma, compactness, and essential spectrum of operators on compact Lie groups"
“戈伯格引理、紧致性以及紧致李群上算子的基本谱”的勘误
Global $L^p$ continuity of Fourier integral operators
傅里叶积分算子的全局 $L^p$ 连续性
Schatten classes and traces on compact groups
  • DOI:
    10.4310/mrl.2017.v24.n4.a3
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Delgado;Michael Ruzhansky
  • 通讯作者:
    J. Delgado;Michael Ruzhansky
The Gohberg Lemma, compactness, and essential spectrum of operators on compact Lie groups
紧李群上的戈伯格引理、紧致性和算子的基本谱
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Ruzhansky其他文献

Oscillatory integrals for Mittag-Leffler functions with two variables
具有两个变量的 Mittag-Leffler 函数的振荡积分
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Ikromov;Michael Ruzhansky;A. R. Safarov
  • 通讯作者:
    A. R. Safarov
$\boldsymbol {L}^{\boldsymbol {p}}$ – $\boldsymbol {L}^{\boldsymbol {q}}$ MULTIPLIERS ON COMMUTATIVE HYPERGROUPS
$oldsymbol {L}^{oldsymbol {p}}$ – $oldsymbol {L}^{oldsymbol {q}}$ 可交换超群上的乘数
Holomorphic Factorization for the Solution Operators for Hyperbolic Equations
双曲方程解算子的全纯因式分解
  • DOI:
    10.1007/978-3-0348-8724-3_31
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Ruzhansky
  • 通讯作者:
    Michael Ruzhansky
A local-to-global weak (1,1) type argument and applications to Fourier integral operators
局部到全局弱 (1,1) 类型参数及其在傅里叶积分算子中的应用
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Duv'an Cardona;Michael Ruzhansky
  • 通讯作者:
    Michael Ruzhansky
Fourier multipliers in Hilbert spaces
希尔伯特空间中的傅里叶乘数
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Delgado;Michael Ruzhansky
  • 通讯作者:
    Michael Ruzhansky

Michael Ruzhansky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Ruzhansky', 18)}}的其他基金

Regularity in affiliated von Neumann algebras and applications to partial differential equations
附属冯诺依曼代数的正则性及其在偏微分方程中的应用
  • 批准号:
    EP/R003025/2
  • 财政年份:
    2018
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Research Grant
Regularity in affiliated von Neumann algebras and applications to partial differential equations
附属冯诺依曼代数的正则性及其在偏微分方程中的应用
  • 批准号:
    EP/R003025/1
  • 财政年份:
    2017
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Research Grant
Quantization on Lie groups
李群的量化
  • 批准号:
    EP/K039407/1
  • 财政年份:
    2013
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Research Grant
Asymptotic properties of solutions to hyperbolic equations
双曲方程解的渐近性质
  • 批准号:
    EP/E062873/1
  • 财政年份:
    2007
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Research Grant

相似国自然基金

基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
三维流形的L-space猜想和左可序性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高维space-filling问题及其相关问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
  • 批准号:
    20Y11906700
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
  • 批准号:
    11975075
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
  • 批准号:
    41974039
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
  • 批准号:
    60902038
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
  • 批准号:
    30670578
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of phase space analysis method toward well focused negative ion beam
聚焦负离子束相空间分析方法的发展
  • 批准号:
    21K20357
  • 财政年份:
    2021
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of a phase space topology based analysis method for detection of structural characteristic changes of structures
开发基于相空间拓扑的分析方法来检测结构的结构特征变化
  • 批准号:
    16K06460
  • 财政年份:
    2016
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Phase space analysis by modulation spaces
通过调制空间进行相空间分析
  • 批准号:
    26610021
  • 财政年份:
    2014
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Feature Extraction of Human Motion by using Phase Space and Its Application to Car-Driver's Motion Analysis
相空间人体运动特征提取及其在汽车驾驶员运动分析中的应用
  • 批准号:
    25870855
  • 财政年份:
    2013
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
SBIR Phase I: Identifying Drug Leads via 3D Pharmacophore Space Analysis
SBIR 第一阶段:通过 3D 药效团空间分析识别先导药物
  • 批准号:
    1143484
  • 财政年份:
    2012
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Standard Grant
Construction of quantitative methodology in phase space analysis
相空间分析定量方法的构建
  • 批准号:
    23654049
  • 财政年份:
    2011
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
New construction of phase space analysis that conforms to low-dimensional dynamical systems
符合低维动力系统的相空间分析新结构
  • 批准号:
    22540190
  • 财政年份:
    2010
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of phase-space sampling molecular dynamics method for long time-scale analysis
用于长时间尺度分析的相空间采样分子动力学方法的发展
  • 批准号:
    20360051
  • 财政年份:
    2008
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Phase Space Analysis of Partial Differential Equations
偏微分方程的相空间分析
  • 批准号:
    19204013
  • 财政年份:
    2007
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Elucidation of Phase Formation Dynamics Measured by New Space-Time Graphical Analysis Method
阐明新时空图形分析方法测量的相形成动力学
  • 批准号:
    11440203
  • 财政年份:
    1999
  • 资助金额:
    $ 71.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了