Convex Optimization Based Robust Spatial Multiplexing Techniques for Downlink Multiuser Wireless Systems

基于凸优化的下行多用户无线系统鲁棒空间复用技术

基本信息

  • 批准号:
    EP/G020442/1
  • 负责人:
  • 金额:
    $ 32.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The demand for high speed data transmission over wireless access is growing steadily due to rich multimedia applications such as video streaming, music and interactive services. The expectation is to enable wireless access to provide the same data rate and quality of services (QoS) as that provided by wire-line counterparts. This requires provision of beyond 100 Mb/s and preferably 1Gb/s wireless access. The data rates of wireless systems can be increased by exploiting spatial diversity provided by multiple antennas at the transmitter and receivers. A basestation could serve multiple users simultaneously in the same frequency band using downlink spatial multiplexing techniques. For a frequency division duplex (FDD) based system, the use of multiple antennas at the transmitter however requires feedback of channel state information (CSI) from the receiver. Such channel state information when used at the transmitter will always be inaccurate due to channel estimation error, quantization of the estimates (due to finite budget for bit feedback) and relative motion between the transmitter and receiver. For example, when the channel is changing moderately fast, due to feedback delay, by the time the transmitter uses the channel state information, the true forward channel would have changed. The error which is the difference between the true channel and the estimates available at the transmitter could seriously degrade the transmitter diversity performance. Therefore, it is very important to consider the channel state information error when designing transmitter diversity techniques for the enhancement of capacity or coverage.Motivated by the rich theoretical and experimental results on the benefits of transmitter diversity techniques for wireless multiuser systems, we propose to develop advanced signal processing techniques to mitigate this very important and practical problem of imperfect channel state information at the basestation, a major limitation for using these diversity techniques in a highly hostile downlink channel environment. The research will be focused on developing robust beamformers/transmit diversity techniques that are resilient to channel state information error, using convex optimization techniques such as second order cone programming and semidefinite programming. The performance (in terms of bit error rate (BER), coded BER (CBER) and throughput) will be compared against conventional non-robust techniques for various channel fading profiles obtained using simulations and real field data provided through QinetiQ, facilitated by Professor Malcolm Macleod. This project has a distinct advantage of European collaboration with Prof. Alex Gershman who is a world renowned expert on robust beamforming and array processing techniques, and this window of opportunity should not be lost as we believe this provides an excellent vehicle for UK's standing in the field of robust design and array signal processing at an international level.
由于视频流、音乐和交互式服务等丰富的多媒体应用,对无线接入高速数据传输的需求正在稳步增长。期望是使无线访问能够提供与有线对等物提供的相同的数据速率和服务质量(QoS)。这需要提供超过100mb /s的无线接入,最好是1Gb/s的无线接入。无线系统的数据速率可以通过利用发射器和接收器上的多个天线提供的空间分集来提高。基站可以使用下行链路空间复用技术在同一频带内同时为多个用户服务。对于基于频分双工(FDD)的系统,在发送端使用多天线需要从接收器反馈信道状态信息(CSI)。由于信道估计误差、估计的量化(由于比特反馈的有限预算)以及发射机和接收机之间的相对运动,这种信道状态信息在发射机上使用时总是不准确的。例如,当信道由于反馈延迟而变化较快时,到发射机使用信道状态信息时,真正的前向信道将发生变化。真实信道与发射机估计信道之间的误差会严重降低发射机的分集性能。因此,在设计发射机分集技术以提高容量或覆盖范围时,考虑信道状态信息误差是非常重要的。基于无线多用户系统发射机分集技术的丰富理论和实验结果,我们建议开发先进的信号处理技术来缓解基站信道状态信息不完善这一非常重要和实际的问题,这是在高度敌对的下行信道环境中使用这些分集技术的主要限制。该研究将集中于开发鲁棒波束形成/发射分集技术,该技术可以使用二阶锥规划和半定规划等凸优化技术,对信道状态信息误差具有弹性。该技术的性能(误码率(BER)、编码误码率(CBER)和吞吐量)将与传统的非鲁棒技术进行比较,这些非鲁棒技术使用模拟和由Malcolm Macleod教授提供的QinetiQ提供的实际现场数据获得各种信道衰落曲线。该项目具有与世界知名的强大波束形成和阵列处理技术专家Alex Gershman教授的欧洲合作的明显优势,这个机会之窗不应该失去,因为我们相信这为英国在国际水平的强大设计和阵列信号处理领域的地位提供了一个很好的工具。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sangarapillai Lambotharan其他文献

Sangarapillai Lambotharan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sangarapillai Lambotharan', 18)}}的其他基金

Communications Signal Processing Based Solutions for Massive Machine-to-Machine Networks (M3NETs)
基于通信信号处理的大规模机器对机器网络 (M3NET) 解决方案
  • 批准号:
    EP/R006385/1
  • 财政年份:
    2018
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Research Grant
Massive MIMO wireless networks: Theory and methods
大规模 MIMO 无线网络:理论与方法
  • 批准号:
    EP/M015475/1
  • 财政年份:
    2015
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Research Grant
Advanced Transmit Diversity and Spatial Multiplexing Techniques for the Enhancement of Capacity and Coverage in Wireless Broadband Access Systems.
用于增强无线宽带接入系统容量和覆盖范围的先进传输分集和空间复用技术。
  • 批准号:
    EP/E041817/1
  • 财政年份:
    2007
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Effective Algorithms for Structured Nonconvex Optimization Based on First- and Second-Order Methods and Convex Relaxations
基于一阶、二阶方法和凸松弛的结构化非凸优化的有效算法
  • 批准号:
    2445089
  • 财政年份:
    2020
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Studentship
Design of Gradient-Based Methods for Solving General and Huge Convex Optimization Problems
解决一般和大型凸优化问题的基于梯度的方法设计
  • 批准号:
    1812904
  • 财政年份:
    2018
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
Collaborative Research: A Global Algorithm for Quadratic Nonconvex AC-OPF Based on Successive Linear Optimization and Convex Relaxation
协作研究:基于逐次线性优化和凸松弛的二次非凸AC-OPF全局算法
  • 批准号:
    1851602
  • 财政年份:
    2018
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
Nonlinear Optimal Control for Constrained Systems based on Inverse problems of Convex Optimization
基于凸优化反问题的约束系统非线性最优控制
  • 批准号:
    17K17830
  • 财政年份:
    2017
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: A Global Algorithm for Quadratic Nonconvex AC-OPF Based on Successive Linear Optimization and Convex Relaxation
协作研究:基于逐次线性优化和凸松弛的二次非凸AC-OPF全局算法
  • 批准号:
    1711921
  • 财政年份:
    2017
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
Collaborative Research: A Global Algorithm for Quadratic Nonconvex AC-OPF Based on Successive Linear Optimization and Convex Relaxation
协作研究:基于逐次线性优化和凸松弛的二次非凸AC-OPF全局算法
  • 批准号:
    1821854
  • 财政年份:
    2017
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
Collaborative Research: A Global Algorithm for Quadratic Nonconvex AC-OPF Based on Successive Linear Optimization and Convex Relaxation
协作研究:基于逐次线性优化和凸松弛的二次非凸AC-OPF全局算法
  • 批准号:
    1711850
  • 财政年份:
    2017
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
Study on Set-Valued Inequalities based on Set-Valued Analysis and Convex Analysis and its Applications to Optimization Problems
基于集值分析和凸分析的集值不等式研究及其在优化问题中的应用
  • 批准号:
    26400194
  • 财政年份:
    2014
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decoding Algorithms for LDPC Codes based on Convex Optimization and Its Applications
基于凸优化的LDPC码译码算法及其应用
  • 批准号:
    22560370
  • 财政年份:
    2010
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Stochastic Oracle Based Algorithms for Stochastic Programming and Large Scale Convex Optimization
基于随机规划和大规模凸优化的高效随机 Oracle 算法
  • 批准号:
    0914785
  • 财政年份:
    2009
  • 资助金额:
    $ 32.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了