A proposal for the visit of Dr. Vladimir Al. Osipov: From Random Matrices to Random Landscapes
关于弗拉基米尔·阿尔博士访问的建议。
基本信息
- 批准号:EP/G022496/1
- 负责人:
- 金额:$ 1.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random Matrix Theory (RMT) acquired in the last decade the statusof a universal paradigm in mathematical description of phenomenain systems where chaos or/and underlying disorder play anessential role. Similarly but somewhat independently the idea of energy landscapespervades the theoretical description of glasses, disorderedsystems, proteins, etc., and recently re-emerged in stringtheory and cosmology. In the simplest version the main goalis to describe the statics and dynamics of the whole system, orone of its subparts, by a single point-like particle moving in a randompotential, which encodes the complexity of the original system.The hope then is to be able to classify the possible classes ofrandom potential and to establish generic, universal properties,not unlike those emerging in the RMT. In a more advanced ( andrealistic) version one may be interested in properties oflandscapes related to conformations of polymers, or evenhigher-dimensional objects like membranes. The goal of the present small-scale three months project is toperform pilot investigations of two main problems:(i) Counting equilibrium configurations of elastic objects like polymers or membranes subject to the influence of a random potential landscape and (ii) Investigating Statistical Mechanics of a single point-like particle in a new type ofrandom potential.In the series of works by the Principal Investigator and other researchers it was demonstrated that RMT methods and ideas frequentlyprove to be of direct relevance in the landscape context. So far they were applied only to the simplest point-like particles in the simplest possible typeof randomness (Gaussian). We hope to extend utility of those methods tohigher-dimensional objects and to include new types of disorder.
在过去十年中,随机矩阵理论(RMT)在混沌或/和潜在无序起重要作用的现象系统的数学描述中获得了普遍范式的地位。类似的,但在某种程度上是独立的,能量景观的概念遍布于对玻璃、无序系统、蛋白质等的理论描述中,最近又重新出现在弦理论和宇宙学中。在最简单的版本中,主要目标是通过在随机势中移动的单个点状粒子来描述整个系统或其子部分的静力学和动力学,这编码了原始系统的复杂性。我们希望能够对随机势的可能类别进行分类,并建立一般的、通用的性质,就像RMT中出现的那些性质一样。在一个更高级(和现实)的版本中,人们可能会对与聚合物构象有关的景观特性感兴趣,甚至是像膜这样的高维物体。目前为期三个月的小规模项目的目标是对两个主要问题进行试点调查:(i)计算受随机势景观影响的聚合物或膜等弹性物体的平衡构型,以及(ii)研究新型随机势中的单个点状粒子的统计力学。在首席研究员和其他研究人员的一系列工作中,RMT的方法和想法经常被证明与景观环境直接相关。到目前为止,它们只应用于最简单的随机类型(高斯)中最简单的点状粒子。我们希望将这些方法的效用扩展到更高维度的对象,并包括新的无序类型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Fyodorov其他文献
Yan Fyodorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Fyodorov', 18)}}的其他基金
Random Hessians and Jacobians: theory and applications
随机 Hessians 和 Jacobian:理论与应用
- 批准号:
EP/V002473/1 - 财政年份:2021
- 资助金额:
$ 1.81万 - 项目类别:
Research Grant
The Many Faces of Random Characteristic Polynomials
随机特征多项式的多个面
- 批准号:
EP/N009436/1 - 财政年份:2016
- 资助金额:
$ 1.81万 - 项目类别:
Research Grant
Insights into Disordered Landscapes via Random Matrix Theory and Statistical Mechanics
通过随机矩阵理论和统计力学洞察无序景观
- 批准号:
EP/J002763/1 - 财政年份:2012
- 资助金额:
$ 1.81万 - 项目类别:
Research Grant
相似海外基金
PHARMACEUTICS FORMULATION/ CHEMISTRY MANUFACTURING AND CONTROLS CONSULTING SERVICES FOR SMALL MOLECULES AND/OR BIOLOGICS. KEY PERSONNEL CONSULTANT: DR
小分子和/或生物制剂的药物制剂/化学制造和控制咨询服务。
- 批准号:
10721138 - 财政年份:2022
- 资助金额:
$ 1.81万 - 项目类别:
BLR&D Research Career Scientist Award Application for Dr. Stephen Tomlinson
BLR
- 批准号:
10618250 - 财政年份:2020
- 资助金额:
$ 1.81万 - 项目类别:
BLR&D Research Career Scientist Award Application for Dr. Stephen Tomlinson
BLR
- 批准号:
10451506 - 财政年份:2020
- 资助金额:
$ 1.81万 - 项目类别:
BLR&D Research Career Scientist Award for Dr. Barbel Rohrer
BLR
- 批准号:
10515291 - 财政年份:2019
- 资助金额:
$ 1.81万 - 项目类别:
BLR&D Research Career Scientist Award for Dr. Barbel Rohrer
BLR
- 批准号:
10293580 - 财政年份:2019
- 资助金额:
$ 1.81万 - 项目类别:
BLR&D Research Career Scientist Award for Dr. Barbel Rohrer
BLR
- 批准号:
10047234 - 财政年份:2019
- 资助金额:
$ 1.81万 - 项目类别:
Mayo Clinic Hepatobiliary SPORE Diversity Supplement Dr. Musa Gabere
Mayo Clinic 肝胆 SPORE 多样性补充剂 Dr. Musa Gabere
- 批准号:
10310895 - 财政年份:2018
- 资助金额:
$ 1.81万 - 项目类别:
Long term outcomes of therapy in women initiated on lifelong ART because of pregnancy in DR Congo
刚果民主共和国因怀孕而开始终身抗逆转录病毒治疗的妇女治疗的长期结果
- 批准号:
9117083 - 财政年份:2016
- 资助金额:
$ 1.81万 - 项目类别:
Visit to Sciencetech Inc. and Angstrom Engineering by Prof. F. Rosei and Dr. R. Nechache (INRS) to explore potential research partnerships
F. Rosei 教授和 R. Nechache 博士 (INRS) 访问 Sciencetech Inc. 和 Angstrom Engineering,探索潜在的研究合作伙伴关系
- 批准号:
477394-2014 - 财政年份:2014
- 资助金额:
$ 1.81万 - 项目类别:
Interaction Grants Program
Visit to AFCC by Prof. F. Rosei and Dr. J. MacLeod (INRS) to explore potential research partnerships
F. Rosei 教授和 J. MacLeod 博士 (INRS) 访问 AFCC,探讨潜在的研究合作伙伴关系
- 批准号:
460769-2013 - 财政年份:2013
- 资助金额:
$ 1.81万 - 项目类别:
Interaction Grants Program