Qualitative Performance Assessment of Adaptive Filtering and Machine Learning Algorithms

自适应过滤和机器学习算法的定性性能评估

基本信息

  • 批准号:
    EP/G032211/1
  • 负责人:
  • 金额:
    $ 19.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Signal modality characterisation, that is, the assessment of the linear, nonlinear, deterministics and stochastic signal content, is becoming an increasingly important area of multidisciplinary research. These ideas arose in Physics in the mid-1990s, however, the applications in machine learning and signal processing are only recently becoming apparent. As changes in the signal nature from, say, linear to nonlinear, can reveal e.g. health hazard, the signal processing framework should be chosen so as to preserve this critical information. However, standard learning algorithms are typically based on second order statistics, and will linearise naturally nonlinear phenomena.This proposal aims to provide a novel theoretical and computational framework for the design of learning algorithms with enhanced qualitative performance. Standard, second order statistics based adaptive filtering and machine learning algorithms are designed to optimise quantitative performance, and useful information is often lost. This type of problem arises typically in biomedical applications, for example, the change in the nature of brain electrical recordings from linear stochastic (ARMA) to nonlinear deterministic (chaotic) can indicate health hazard. The fundamental novelty of this work is a recently proposed, but not fully tested, delay vector variance (DVV) method which examines the local predictability and determinism of a signal in phase space, and provides a measure for the degree of linear, nonlinear, deterministic, and stochastic signal natures. This will serve as a framework to analyse the changes that signal processing and machine learning make to signal natures, and as a basis for the development of novel optimisation criteria which will both provide the required quantitative performance and preserve the fundamental signal nature to the desired degree. The team at Imperial have performed conceptual work related to this proposal, but no rigorous statistical evaluation or relavance analysis of the underlying state space features. The proposed research will perform comprehensive testing in order to provide enhanced understanding and insight into the qualitative peformance of learning algorithms used in biomedical applications. This will also lead to the design of novel adaptive learning algorithms capable of preserving the signal nature to a desired extent, a critical issue in several emerging applications.Solutions to these problems open new possibilities for advances in biomedical engineering, which underpins this research proposal, based at Imperial College and in collaboration with a leading applied biomedical group from Germany.
信号模态表征,即对线性、非线性、确定性和随机信号内容的评估,正成为多学科研究的一个日益重要的领域。这些想法在20世纪90年代中期出现在物理学中,然而,在机器学习和信号处理中的应用直到最近才变得明显。由于信号性质从线性到非线性的变化可以揭示例如健康危害,因此应选择信号处理框架以保留此关键信息。然而,标准的学习算法通常是基于二阶统计量,并会线性化自然nonlinearphenomen.This建议的目的是提供一个新的理论和计算框架的学习算法的设计与提高定性性能。标准的、基于二阶统计量的自适应滤波和机器学习算法被设计为优化定量性能,并且有用的信息经常丢失。这种类型的问题通常出现在生物医学应用中,例如,脑电记录的性质从线性随机(阿尔马)到非线性确定性(混沌)的变化可以指示健康危害。这项工作的基本新奇是最近提出的,但没有完全测试,延迟矢量方差(DVV)的方法,检查本地的可预测性和确定性的信号在相空间中,并提供了一个衡量的程度的线性,非线性,确定性和随机信号的性质。这将作为一个框架来分析信号处理和机器学习对信号性质的变化,并作为开发新的优化标准的基础,这些标准将提供所需的定量性能并将基本信号性质保持到所需的程度。帝国理工学院的团队已经完成了与该提议相关的概念性工作,但没有对潜在的状态空间特征进行严格的统计评估或相关性分析。拟议的研究将进行全面的测试,以提供更好的理解和洞察生物医学应用中使用的学习算法的定性性能。这也将导致新的自适应学习算法的设计,能够保持信号的性质,以所需的程度,在几个新兴的applications.Solutions的关键问题,这些问题的解决方案打开了新的可能性,在生物医学工程的进步,这支持了这项研究计划,在帝国理工学院的基础上,并与领先的应用生物医学组从德国合作。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Full Mean Square Analysis of CLMS for Second-Order Noncircular Inputs
二阶非循环输入的 CLMS 全均方分析
Application of multivariate empirical mode decomposition for seizure detection in EEG signals
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danilo Mandic其他文献

Tensor ring rank determination using odd-dimensional unfolding
  • DOI:
    10.1016/j.neunet.2024.106947
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yichun Qiu;Guoxu Zhou;Chao Li;Danilo Mandic;Qibin Zhao
  • 通讯作者:
    Qibin Zhao
MachineLearning and Signal ProcessingApplications of Fixed Point Theory(TUTORIAL LECTURE)
机器学习和信号处理不动点理论的应用(教程讲座)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danilo Mandic;Isao Yamada
  • 通讯作者:
    Isao Yamada
DH-452784-1 <strong>UNSUPERVISED MACHINE LEARNING IDENTIFIES PROGNOSTICALLY SIGNIFICANT PHENOGROUPS FROM NEURAL NETWORK-DERIVED ECG FEATURES</strong>
  • DOI:
    10.1016/j.hrthm.2023.03.384
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arunashis Sau;Antônio H. Ribeiro;Kathryn McGurk;Libor Pastika;Nikesh Bajaj;Jun Yu Chen;Huiyi Wu;Xili Shi;Katerina Hnatkova;Sean Zheng;Annie Briton;Martin Shipley;Irena Andršová;Tomáš Novotný;Ester Sabino;Jonathan W. Waks;Daniel B. Kramer;Danilo Mandic;Nicholas S. Peters;Marek Malik
  • 通讯作者:
    Marek Malik
DH-452784-1 strongUNSUPERVISED MACHINE LEARNING IDENTIFIES PROGNOSTICALLY SIGNIFICANT PHENOGROUPS FROM NEURAL NETWORK-DERIVED ECG FEATURES/strong
DH-452784-1 强大的无监督机器学习从神经网络衍生的心电图特征中识别出具有预后意义的表型组。
  • DOI:
    10.1016/j.hrthm.2023.03.384
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Arunashis Sau;Antônio H. Ribeiro;Kathryn McGurk;Libor Pastika;Nikesh Bajaj;Jun Yu Chen;Huiyi Wu;Xili Shi;Katerina Hnatkova;Sean Zheng;Annie Briton;Martin Shipley;Irena Andršová;Tomáš Novotný;Ester Sabino;Jonathan W. Waks;Daniel B. Kramer;Danilo Mandic;Nicholas S. Peters;Marek Malik;Fu Siong Ng
  • 通讯作者:
    Fu Siong Ng
Detecting gamma-band responses to the speech envelope for the ICASSP 2024 Auditory EEG Decoding Signal Processing Grand Challenge
检测 ICASSP 2024 听觉脑电图解码信号处理重大挑战中语音包络的伽马频带响应
  • DOI:
    10.48550/arxiv.2401.17380
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mike Thornton;Jonas Auernheimer;Constantin Jehn;Danilo Mandic;Tobias Reichenbach
  • 通讯作者:
    Tobias Reichenbach

Danilo Mandic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danilo Mandic', 18)}}的其他基金

Multiscale Signal Processing for Next Generation Electroencephalography
下一代脑电图的多尺度信号处理
  • 批准号:
    EP/K025643/1
  • 财政年份:
    2013
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Research Grant
Novel Adaptive Filtering Techniques for Multidimensional Signals
多维信号的新颖自适应滤波技术
  • 批准号:
    EP/H026266/1
  • 财政年份:
    2010
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Research Grant
Novel Multivariate Nonlinear Signal Processing Methods for Modelling and Prediction
用于建模和预测的新型多元非线性信号处理方法
  • 批准号:
    EP/D061709/1
  • 财政年份:
    2006
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Research Grant

相似海外基金

Development and demonstration of Automated Rapid Thermal Performance Assessments (RaThPAs) for scalable, accurate assessment of building fabric
开发和演示自动快速热性能评估 (RaThPA),用于对建筑结构进行可扩展、准确的评估
  • 批准号:
    10073283
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Collaborative R&D
Clarification of actual driving conditions of brain injury survivors and the relationship between off-road assessment performance and accident and violation history
澄清脑损伤幸存者的实际驾驶状况以及越野评估表现与事故和违规历史之间的关系
  • 批准号:
    23K16647
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Performance Estimation, Assessment, Reporting and simuLation (PEARL)
绩效评估、评估、报告和模拟 (PEARL)
  • 批准号:
    10093369
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    EU-Funded
Rapid assessment of fabric performance: historic buildings
快速评估织物性能:历史建筑
  • 批准号:
    10074071
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Collaborative R&D
Proteomics-based assessment of drug performance in vivo by establishing target engagement methods and characterizing new disease models
通过建立靶点参与方法和表征新疾病模型,对体内药物性能进行基于蛋白质组学的评估
  • 批准号:
    2882689
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Studentship
Development of an Assessment Tool for Difficulty in Job Performance and Coping Guidelines for Continued Employment of Middle-Aged and Older Nurses
中老年护士工作绩效困难评估工具及继续就业应对指南的开发
  • 批准号:
    23K09911
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data Analytics for Ship Performance Assessment Considering Measurement Uncertainties
考虑测量不确定性的船舶性能评估数据分析
  • 批准号:
    2875854
  • 财政年份:
    2023
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Studentship
Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
  • 批准号:
    568474-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Postdoctoral Fellowships
Innovative Analytical and Experimental Techniques for Performance Assessment of Deteriorated and Repaired Reinforced Concrete Structures
劣化和修复钢筋混凝土结构性能评估的创新分析和实验技术
  • 批准号:
    RGPIN-2020-06476
  • 财政年份:
    2022
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Discovery Grants Program - Individual
Performance assessment of buried pipelines considering soil-structure interaction
考虑土壤-结构相互作用的埋地管道性能评估
  • 批准号:
    RGPIN-2018-03886
  • 财政年份:
    2022
  • 资助金额:
    $ 19.48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了