Novel Adaptive Filtering Techniques for Multidimensional Signals

多维信号的新颖自适应滤波技术

基本信息

  • 批准号:
    EP/H026266/1
  • 负责人:
  • 金额:
    $ 42.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposal seeks to develop a rigorous theoretical and computational framework for statistical signal processing of three- and four-dimensional real world signals. This will be achieved in the quaternion domain, benefiting from its division algebra, and thus promising a quantum improvement in the modelling of such signals. Particular emphasis will be on solutions for adaptive signal processing problems, whose accuracy will be enhanced through the use of quaternion statistics and the associated special forms of correlation- and eigen-structures. Current algorithms are less than adequate for the very large class of processes with noncircular (rotation dependent) probability distributions, and for signals whose components exhibit coupling and large unbalanced dynamics; these are common in array signal processing, wind modelling, motion tracking, and chaos engineering.The proposed research will enable unified modelling of three- and four-dimensional signals, together with better understanding of the associated nonlinear dynamics and geometry of learning, and will also serve as a framework for simultaneous modelling of heterogeneous data sources. The fundamental novelty of this work is our recently proposed quaternion least mean square (QLMS) algorithm, which makes full use of quaternion algebra, and thus allows for additional degrees of freedom and enhanced accuracy in the modelling of real world phenomena. This will also serve as a framework to design a suite of novel adaptive filtering and tracking algorithms, based on both standard and widely linear models, which will be suitable to deal with the generality of quaternion valued signals. Comprehensive theoretical evaluation and practical testing will be performed in order to prove the worthwhileness of the proposed approach. Practical applications considered will be short term wind forecasting in renewable energy and trajectory tracking from motion sensors in smart environments; particular gains are expected when dealing with large and intermittent dynamics at multiple scales (turbulence, gusts, multiple coupled rotation trajectories).This research proposal, based at Imperial College and in collaboration with an internationally leading research group from University of Tokyo Japan, will find solutions to these problems and will also open new possibilities for advances in a number of emerging areas dealing with uncertainty, complexity and multidimensional data natures.
该建议旨在为三维和四维真实的世界信号的统计信号处理开发一个严格的理论和计算框架。这将在四元数域中实现,受益于其除法代数,从而有望在此类信号的建模中实现量子改进。特别强调的是自适应信号处理问题的解决方案,其准确性将通过使用四元数统计和相关的特殊形式的相关性和本征结构得到提高。目前的算法是不够的,为非常大的一类过程的非循环(旋转相关的)概率分布,以及其分量表现出耦合和大的不平衡动态的信号;这些在阵列信号处理、风建模、运动跟踪和混沌工程中是常见的。拟议的研究将使三维和四维信号的统一建模成为可能,以及更好地理解相关的非线性动力学和几何学的学习,也将作为一个框架,同时建模的异构数据源。这项工作的基本新奇是我们最近提出的四元数最小均方(QLMS)算法,它充分利用四元数代数,从而允许额外的自由度和提高精度的建模真实的世界现象。这也将作为一个框架,设计一套新的自适应滤波和跟踪算法,基于标准和广泛的线性模型,这将是适合于处理的四元数值信号的一般性。为了证明所提出的方法的可行性,将进行全面的理论评估和实际测试。考虑的实际应用将是可再生能源的短期风预测和智能环境中运动传感器的轨迹跟踪;当处理多尺度的大的和间歇性的动态时,预期会有特别的收获(湍流,阵风,多个耦合旋转轨迹)。这项研究计划,基于帝国理工学院,并与日本东京大学的国际领先研究小组合作,将为这些问题找到解决方案,并将为处理不确定性,复杂性和多维数据性质的一些新兴领域的进步开辟新的可能性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danilo Mandic其他文献

Tensor ring rank determination using odd-dimensional unfolding
  • DOI:
    10.1016/j.neunet.2024.106947
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yichun Qiu;Guoxu Zhou;Chao Li;Danilo Mandic;Qibin Zhao
  • 通讯作者:
    Qibin Zhao
MachineLearning and Signal ProcessingApplications of Fixed Point Theory(TUTORIAL LECTURE)
机器学习和信号处理不动点理论的应用(教程讲座)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danilo Mandic;Isao Yamada
  • 通讯作者:
    Isao Yamada
DH-452784-1 <strong>UNSUPERVISED MACHINE LEARNING IDENTIFIES PROGNOSTICALLY SIGNIFICANT PHENOGROUPS FROM NEURAL NETWORK-DERIVED ECG FEATURES</strong>
  • DOI:
    10.1016/j.hrthm.2023.03.384
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arunashis Sau;Antônio H. Ribeiro;Kathryn McGurk;Libor Pastika;Nikesh Bajaj;Jun Yu Chen;Huiyi Wu;Xili Shi;Katerina Hnatkova;Sean Zheng;Annie Briton;Martin Shipley;Irena Andršová;Tomáš Novotný;Ester Sabino;Jonathan W. Waks;Daniel B. Kramer;Danilo Mandic;Nicholas S. Peters;Marek Malik
  • 通讯作者:
    Marek Malik
DH-452784-1 strongUNSUPERVISED MACHINE LEARNING IDENTIFIES PROGNOSTICALLY SIGNIFICANT PHENOGROUPS FROM NEURAL NETWORK-DERIVED ECG FEATURES/strong
DH-452784-1 强大的无监督机器学习从神经网络衍生的心电图特征中识别出具有预后意义的表型组。
  • DOI:
    10.1016/j.hrthm.2023.03.384
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Arunashis Sau;Antônio H. Ribeiro;Kathryn McGurk;Libor Pastika;Nikesh Bajaj;Jun Yu Chen;Huiyi Wu;Xili Shi;Katerina Hnatkova;Sean Zheng;Annie Briton;Martin Shipley;Irena Andršová;Tomáš Novotný;Ester Sabino;Jonathan W. Waks;Daniel B. Kramer;Danilo Mandic;Nicholas S. Peters;Marek Malik;Fu Siong Ng
  • 通讯作者:
    Fu Siong Ng
Detecting gamma-band responses to the speech envelope for the ICASSP 2024 Auditory EEG Decoding Signal Processing Grand Challenge
检测 ICASSP 2024 听觉脑电图解码信号处理重大挑战中语音包络的伽马频带响应
  • DOI:
    10.48550/arxiv.2401.17380
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mike Thornton;Jonas Auernheimer;Constantin Jehn;Danilo Mandic;Tobias Reichenbach
  • 通讯作者:
    Tobias Reichenbach

Danilo Mandic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danilo Mandic', 18)}}的其他基金

Multiscale Signal Processing for Next Generation Electroencephalography
下一代脑电图的多尺度信号处理
  • 批准号:
    EP/K025643/1
  • 财政年份:
    2013
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Research Grant
Qualitative Performance Assessment of Adaptive Filtering and Machine Learning Algorithms
自适应过滤和机器学习算法的定性性能评估
  • 批准号:
    EP/G032211/1
  • 财政年份:
    2009
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Research Grant
Novel Multivariate Nonlinear Signal Processing Methods for Modelling and Prediction
用于建模和预测的新型多元非线性信号处理方法
  • 批准号:
    EP/D061709/1
  • 财政年份:
    2006
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Research Grant

相似海外基金

RUI: Efficient Adaptive Backward Stochastic Differential Equation Methods for Nonlinear Filtering Problems
RUI:解决非线性滤波问题的高效自适应后向随机微分方程方法
  • 批准号:
    1720222
  • 财政年份:
    2017
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Continuing Grant
Adaptive and high order PDF methods for nonlinear filtering problems
用于非线性滤波问题的自适应和高阶 PDF 方法
  • 批准号:
    1620150
  • 财政年份:
    2016
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Standard Grant
Recurrent Deep Learning Machines for Robust, Adaptive, or Accommodative Filtering
用于鲁棒、自适应或适应性过滤的循环深度学习机
  • 批准号:
    1508880
  • 财政年份:
    2015
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Standard Grant
Analysis and Developments of Kernel Adaptive Filtering Algorithm
核自适应滤波算法的分析与发展
  • 批准号:
    15K06081
  • 财政年份:
    2015
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intelligent task-driven Adaptive Filtering Techniques
智能任务驱动的自适应过滤技术
  • 批准号:
    427418-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Intelligent task-driven Adaptive Filtering Techniques
智能任务驱动的自适应过滤技术
  • 批准号:
    427418-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Intelligent task-driven Adaptive Filtering Techniques
智能任务驱动的自适应过滤技术
  • 批准号:
    427418-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Intelligent task-driven Adaptive Filtering Techniques
智能任务驱动的自适应过滤技术
  • 批准号:
    427418-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Adaptive image filtering for marker localization in prostate cancer brachytherapy
用于前列腺癌近距离放射治疗中标记定位的自适应图像过滤
  • 批准号:
    415025-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 42.03万
  • 项目类别:
    University Undergraduate Student Research Awards
Low-Complexity Adaptive Beamforming Algorithms Based on Low-Rank Decompositions and Set-Membership Filtering
基于低秩分解和集合成员过滤的低复杂度自适应波束形成算法
  • 批准号:
    EP/H011544/1
  • 财政年份:
    2010
  • 资助金额:
    $ 42.03万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了