Random structures, spin glasses and efficient algorithms
随机结构、自旋玻璃和高效算法
基本信息
- 批准号:EP/G039070/1
- 负责人:
- 金额:$ 45.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An Algorithm is a systematic procedure for solving a computational problem that can be implemented on a computer. An example is the Gaussian elimination method for solving a system of linear equations. The running time of an algorithm is the number of elementary steps (e.g., addition, modification of a symbol in a string, etc.) that the algorithm performs. Of course, the running time depends on the size of the input. For example, in the case of Gaussian elimination the size of the input is the number of symbols needed to write down (or enter) the linear system of equations. Denote this quantity by m. Then the running time of Gaussian elimination is bounded by m^3. Generally an algorithm is considered Efficient if for every possible input its running time is bounded by a polynomial in the size of that input. (Hence, Gaussian elimination is efficient.)In spite of intensive research since the early days of computing, there is a broad class of computational problems for which no efficient algorithms are known. In terms of complexity theory, most of these problems can be classified as NP-hard . One example is the Boolean Satisfiability problem (SAT). In this problem the input is a Boolean formula, and the objective is to find an assignment to the Boolean variables that satisfies the entire formula (if such a satisfying assignment exists).Although the SAT problem is NP-hard, it occurs as a sub-problem in numberless real-world applications. In fact, SAT is of similarly eminent importance in Computer Science as solving polynomial equations is in Algebra. Therefore, an immense amount of research deals with heuristic algorithms for SAT. The goal of this line of research is to devise algorithms that can efficiently solve as general types of SAT inputs as possible (although none of these methods solves all possible inputs efficiently).Despite this bulk of work, it remains extremely simple to generate empirically hard problem instances that elude all of the known heuristic algorithms. The easiest way to do so is by drawing a SAT formula at random (from a suitable but very simple probability distribution). Indeed, random input instances were considered prime examples of hard inputs to such an extent that it was proposed to exploit their hardness in cryptographic applications. Random SAT formulas also occur prominently in the seminal work on Algorithms and Complexity from the 1970s, where their empirical hardness was reckoned most vexing . However, it remained unknown why these types of instances eluded all known algorithms (let alone how else to cope with these inputs).Therefore, it came as a surprise when statistical physicists reported that a new algorithm called Survey Propagation ( SP ) experimentally solves these hard SAT inputs efficiently. Indeed, a naive implementation of SP solves within seconds sample instances with a million of variables, while even the most advanced previous SAT solvers struggle to solve inputs with a few hundred variables. SP comes with a sophisticated but mathematically non-rigorous analysis based on ideas from spin glass theory. This analysis suggests why all prior algorithms perform so badly. Its key feature is that it links the difficulty of solving a SAT input to geometric properties of the set of solutions.Though the physics methods have inspired the SP algorithm, they do not provide a satisfactory explanation for the success (or the limitations) of SP. Therefore, the goal of this project is to study these new ideas from spin glass theory from a Computer Science perspective via mathematically rigorous methods. On the one hand, we are going to provide a rigorous analysis of SP to classify what types of inputs it can solve. On the other hand, we intend to study the behaviour of algorithms from the point of view of the solution space geometry ; this perspective has not been studied systematically in Algorithms and Complexity before.
算法是一个系统的程序,用于解决可以在计算机上实现的计算问题。一个例子是求解线性方程组的高斯消去法。算法的运行时间是基本步骤的数量(例如,添加、修改字符串中的符号等)算法执行的。当然,运行时间取决于输入的大小。例如,在高斯消去法的情况下,输入的大小是写下(或输入)线性方程组所需的符号数。用m表示这个量。则高斯消去法的运行时间以m^3为界。一般来说,一个算法被认为是有效的,如果对于每一个可能的输入,它的运行时间是由该输入的大小的多项式限制的。(因此,高斯消除是有效的。尽管从计算的早期开始就进行了深入的研究,但仍有大量的计算问题没有有效的算法。根据复杂性理论,这些问题中的大多数可以归类为NP难问题。一个例子是布尔可满足性问题(SAT)。在这个问题中,输入是一个布尔公式,目标是找到一个满足整个公式的布尔变量的赋值(如果存在这样一个令人满意的赋值)。虽然SAT问题是NP难的,但它在无数的现实世界应用中作为子问题出现。事实上,SAT在计算机科学中的重要性与解决代数中的多项式方程相似。因此,大量的研究涉及启发式算法的SAT。这一系列研究的目标是设计出尽可能有效地解决一般类型的SAT输入的算法(尽管这些方法都没有有效地解决所有可能的输入)。尽管有这么多的工作,它仍然非常简单地生成经验困难的问题实例,避开了所有已知的启发式算法。最简单的方法是随机绘制SAT公式(从一个合适但非常简单的概率分布中)。事实上,随机输入实例被认为是硬输入的主要例子,以至于有人建议在密码学应用中利用它们的硬度。随机SAT公式也出现在20世纪70年代关于算法和复杂性的开创性工作中,在那里他们的经验困难被认为是最令人烦恼的。然而,为什么这些类型的实例避开了所有已知的算法(更不用说如何处理这些输入)仍然是未知的。因此,当统计物理学家报告称一种名为Survey Propagation(SP)的新算法在实验上有效地解决了这些困难的SAT输入时,这让人感到惊讶。事实上,SP的一个简单实现在几秒钟内就可以解决具有一百万个变量的样本实例,而即使是最先进的SAT求解器也很难解决具有几百个变量的输入。SP基于自旋玻璃理论的思想进行了复杂但数学上不严格的分析。这一分析揭示了为什么所有先前的算法表现如此糟糕。它的主要特点是将SAT输入的求解难度与解集的几何性质联系起来。虽然物理方法启发了SP算法,但它们并没有为SP算法的成功(或局限性)提供令人满意的解释。因此,本项目的目标是从计算机科学的角度,通过数学严谨的方法,从自旋玻璃理论研究这些新思想。一方面,我们将对SP进行严格的分析,以分类它可以解决哪些类型的输入。另一方面,我们打算从解空间几何的角度来研究算法的行为;这一观点在算法和复杂性之前还没有系统地研究过。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analyzing Walksat on Random Formulas
- DOI:10.1137/12090191x
- 发表时间:2011-06
- 期刊:
- 影响因子:0
- 作者:A. Coja-Oghlan;A. Frieze
- 通讯作者:A. Coja-Oghlan;A. Frieze
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amin Coja-Oghlan其他文献
Core forging and local limit theorems for the <em>k</em>-core of random graphs
- DOI:
10.1016/j.jctb.2018.12.005 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:
- 作者:
Amin Coja-Oghlan;Oliver Cooley;Mihyun Kang;Kathrin Skubch - 通讯作者:
Kathrin Skubch
Amin Coja-Oghlan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amin Coja-Oghlan', 18)}}的其他基金
Random structures, spin glasses and efficient algorithms
随机结构、自旋玻璃和高效算法
- 批准号:
EP/G039070/2 - 财政年份:2010
- 资助金额:
$ 45.36万 - 项目类别:
Research Grant
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
- 批准号:
23K13655 - 财政年份:2023
- 资助金额:
$ 45.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Higher Spin Structures on Orbifolds
Orbifolds 上的更高自旋结构
- 批准号:
2889168 - 财政年份:2023
- 资助金额:
$ 45.36万 - 项目类别:
Studentship
Exploring spin coherence engineering in group IV semiconductor quantum structures
探索 IV 族半导体量子结构中的自旋相干工程
- 批准号:
23H05455 - 财政年份:2023
- 资助金额:
$ 45.36万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Combined Segmentation and Hemodynamic Analysis of Cerebrovascular Structures using Spatiotemporal Arterial Spin Labeling MRI
使用时空动脉自旋标记 MRI 进行脑血管结构的组合分割和血流动力学分析
- 批准号:
RGPIN-2016-04068 - 财政年份:2022
- 资助金额:
$ 45.36万 - 项目类别:
Discovery Grants Program - Individual
Développement de structures quantiques intégrées sur le silicium pour les interfaces photon-spin
光子自旋硅界面量子结构的发展
- 批准号:
575452-2022 - 财政年份:2022
- 资助金额:
$ 45.36万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Genetically Encoded Probes of Huntingtin Misfolding
亨廷顿蛋白错误折叠的基因编码探针
- 批准号:
10522868 - 财政年份:2022
- 资助金额:
$ 45.36万 - 项目类别:
Genetically Encoded Probes of Huntingtin Misfolding
亨廷顿蛋白错误折叠的基因编码探针
- 批准号:
10666661 - 财政年份:2022
- 资助金额:
$ 45.36万 - 项目类别:
Optical injection of spin current in GeSn quantum structures
GeSn 量子结构中自旋电流的光学注入
- 批准号:
572430-2022 - 财政年份:2022
- 资助金额:
$ 45.36万 - 项目类别:
University Undergraduate Student Research Awards
Combined Segmentation and Hemodynamic Analysis of Cerebrovascular Structures using Spatiotemporal Arterial Spin Labeling MRI
使用时空动脉自旋标记 MRI 进行脑血管结构的组合分割和血流动力学分析
- 批准号:
RGPIN-2016-04068 - 财政年份:2021
- 资助金额:
$ 45.36万 - 项目类别:
Discovery Grants Program - Individual
Interactions between spin wave and magnetic domain structures
自旋波与磁畴结构之间的相互作用
- 批准号:
2104912 - 财政年份:2021
- 资助金额:
$ 45.36万 - 项目类别:
Standard Grant