Congruences between automorphic forms
自同构形式之间的同余
基本信息
- 批准号:EP/G050511/1
- 负责人:
- 金额:$ 29.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to prove new cases of the strong Artin conjecture for totally odd two dimensional representations of the Galois group of a totally real field. More precisely, I propose to establish ``analytic continuation of overconvergent Hilbert modular eigenforms'' in the inert Hilbert case and generalise the main theorem of Buzzard-Taylor to the Hilbert case. Mimicking the approach of Taylor's ``Artin II'' paper, one should get modularity of certain mod p Galois representations subject to some local conditions, and many cases of Artin's conjecture should then become accessible. Secondly, I propose to show that there is another example of the correspondence predicted by Langlands between n-dimensional representations of the absolute Galois group of the rationals Q and (cuspidal) automorphic representations of GL(n) over Q. Following the geometric argument of Kisin-Lai for Hilbert modular forms, it should be possible to construct p-adic analytic families of automorphic Galois representations and associaten-dimensional Galois representations by ``specialisation'' to non-regular algebraic automorphic representations of GL(n) over Q (whose Hodge-Tate weights ``at infinity'' are not necessarily distinct). It may also be possible toprove that non-regular automorphic representations for GL(n) appear on the Chenevier's eigenvariety and associate Galois representations by specialising families of Galois representations Chenevier constructed. Another approach to look at congruences between automorphic forms of ``regular weight'' and ``non-regular weight'', analogous to Deligne-Serre, will also be considered.
证明了全实域上伽罗华群的全奇二维表示的强Artin猜想的新情形。更确切地说,我建议在惰性希尔伯特情形下建立“超收敛希尔伯特模本征式的解析延拓”,并将Buzzard-Taylor的主要定理推广到希尔伯特情形。仿照Taylor‘’Artin II‘’论文的方法,人们应该在某些局部条件下得到某些mod p Galois表示的模性,然后Artin猜想的许多情况应该是可理解的。其次,我建议证明在有理数Q的绝对Galois群的n维表示与Q上GL(N)的(尖角)自同构表示之间存在另一个由朗兰兹预测的对应的例子。遵循Hilbert模形式的Kisin-Lai的几何论点,应该可以通过“专门化”来构造自同构Galois表示和结合维Galois表示的p-进解析族到Q上的GL(N)的非正则代数自同构表示(其Hodge-Tate权‘在’无穷‘处不一定是不同的)。还可以通过特化Chenevier构造的Galois表示族来证明GL(N)的非正则自同构表示出现在Chenevier的本征簇和相关的Galois表示上。还将考虑类似于Deligne-Serre的另一种方法来研究“规则重量”和“非规则重量”的自同构形式之间的同余。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu Sasaki其他文献
Timing measurement BOST with multi-bit delta-sigma TDC
使用多位 delta-sigma TDC 进行时序测量 BOST
- DOI:
10.1109/ims3tw.2015.7177881 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Takeshi Chujo;D. Hirabayashi;Takuya Arafune;S. Shibuya;Shu Sasaki;Haruo Kobayashi;Masanobu Tsuji;Ryoji Shiota;Masafumi Watanabe;N. Dobashi;Sadayoshi Umeda;Hideyuki Nakamura;Koshi Sato - 通讯作者:
Koshi Sato
Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms
分枝情况下希尔伯特模簇的积分模型、模伽罗瓦表示的变形以及权重一形式
- DOI:
10.1007/s00222-018-0825-x - 发表时间:
2018 - 期刊:
- 影响因子:3.1
- 作者:
Shu Sasaki - 通讯作者:
Shu Sasaki
学校経営におけるミドル論の変遷―「期待される役割」に着目して―
中学管理理论的变迁——聚焦“预期角色”——
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Shu Sasaki;Atsuko Sato;Masaaki Watahiki and Kotaro T. Yamamoto;畑中大路;畑中大路;畑中大路;畑中大路 - 通讯作者:
畑中大路
A Serre weight conjecture for geometric Hilbert modular forms in characteristic $p$
特征$p$中几何希尔伯特模形式的塞尔权猜想
- DOI:
10.4171/jems/1265 - 发表时间:
2017 - 期刊:
- 影响因子:2.6
- 作者:
Fred Diamond;Shu Sasaki - 通讯作者:
Shu Sasaki
A mod p Jacquet-Langlands relation and Serre filtration via the geometry of Hilbert modular varieties: Splicing and dicing
Mod p Jacquet-Langlands 关系和通过希尔伯特模簇几何的 Serre 过滤:拼接和切割
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Fred Diamond;Payman L. Kassaei;Shu Sasaki - 通讯作者:
Shu Sasaki
Shu Sasaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 29.17万 - 项目类别:
Standard Grant
Relations between prehomogeneous zeta functions and automorphic forms
前齐次 zeta 函数与自同构形式之间的关系
- 批准号:
22K03251 - 财政年份:2022
- 资助金额:
$ 29.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
P-adic Aspects of L-Values, Congruences Between Automorphic Forms, and Arithmetic Applications
L 值的 P 进数方面、自守形式之间的同余以及算术应用
- 批准号:
2001527 - 财政年份:2020
- 资助金额:
$ 29.17万 - 项目类别:
Standard Grant
Congruences between automorphic forms and Galois representations
自守形式与伽罗瓦表示之间的同余
- 批准号:
2181959 - 财政年份:2019
- 资助金额:
$ 29.17万 - 项目类别:
Studentship
Iwasawa main conjecture and congruences between automorphic representations
岩泽主要猜想和自同构表示之间的同余
- 批准号:
15H06634 - 财政年份:2015
- 资助金额:
$ 29.17万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Connections between curves, automorphic forms, and L-functions
曲线、自守形式和 L 函数之间的联系
- 批准号:
1400905 - 财政年份:2014
- 资助金额:
$ 29.17万 - 项目类别:
Standard Grant
Congruences between automorphic forms and lower bounds on Selmer group
自守形式与 Selmer 群下界之间的同余
- 批准号:
0935613 - 财政年份:2009
- 资助金额:
$ 29.17万 - 项目类别:
Continuing Grant
Arithmetic properties of automorphic forms-Bounds on Fourier coefficients and the interplay between hypergeometric series and automorphic forms
自同构形式的算术性质-傅里叶系数的界限以及超几何级数与自同构形式之间的相互作用
- 批准号:
0757907 - 财政年份:2008
- 资助金额:
$ 29.17万 - 项目类别:
Standard Grant
Congruences between automorphic forms and lower bounds on Selmer group
自守形式与 Selmer 群下界之间的同余
- 批准号:
0501023 - 财政年份:2005
- 资助金额:
$ 29.17万 - 项目类别:
Continuing Grant
Relation between automorphic forms and zeta functions associated with prehomogeneous vector spaces
自同构形式和与预齐次向量空间相关的 zeta 函数之间的关系
- 批准号:
16340012 - 财政年份:2004
- 资助金额:
$ 29.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




