Energy saving in the Foundry Industry by Novel Single Shot Melting Process
通过新型单次熔化工艺实现铸造行业节能
基本信息
- 批准号:EP/G060096/1
- 负责人:
- 金额:$ 65.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to compare the energy used in traditional foundry processes and a novel single shot foundry technology, CRIMSON, and to develop a model of the processes that encapsulates the energy content at each stage. This model can then be used to persuade casting designers to use more energy-efficient processes which consider casting quality as well as design flexibility. The UK retains a globally recognised casting expertise, in copper, aluminium and new light-metal alloys that underpins many competitive, technology-based industries vital to keep the UK's aerospace and automotive base ahead of the competition. These industries draw on advanced R&D work carried out by Birmingham's high-profile Casting Research Group.The University of Birmingham has been at the leading edge of casting R&D for many years. Today, it is internationally acknowledged as a front runner, and the CRIMSON technique - Constrained Rapid Induction Melting Single Shot method - is one such technology which is helping the casting industry make a step-change in product quality, manufacturing responsiveness and energy use.A typical light-metal foundry will tend to work in the following way: from 100 kg to several tonnes of metal is melted in a first furnace, held at about 700 oC in a second, transferred into a ladle and finally poured into the casting mould. It can take a shift (8 hours) to use all the melt in a typical batch and any leftover unused melt is poured off to be used again, or becomes scrap. Quality issues also arise, which must be mitigated: during the time for which the melt is held at temperature, atmospheric water is reduced to hydrogen and oxygen. The hydrogen is highly soluble in the metal at this temperature, but as the casting cools and solidifies, the gas is ejected into bubbles. The bubbles become porosity in the solid casting and have a detrimental effect on performance, therefore, as much gas must be removed as possible from the melt. The oxygen forms a thin layer of oxide on the melt surface, which is then inevitably entrained in the liquid metal when it is transferred between the different furnaces and when the metal is finally poured. The oxide layer (or bi-film) is now an inclusion which, again, has a detrimental effect on the material properties. The longer the metal is held liquid, the more hydrogen is absorbed and the thicker the oxide becomes on the surface.At each stage of the process there are energy losses due to oxidation and furnace inefficiencies, casting yields and eventually scrap. So from an initial theoretical 1.1 GJ/tonne required tomelt aluminium it is possible to estimate that each tonne of aluminium castings shipped will actually use about 182 GJ/tonne.Instead of going through this batch process, the CRIMSON method uses a high-powered furnace to melt just enough metal to fill a single mould, in one go, in a closed crucible. It transfers the crucible into an up-casting station for highly computer-controlled filling of the mould, against gravity, for an optimum filling and solidification regime. The CRIMSON method therefore only holds the liquid aluminium for a minimum of time thus drastically reducing the energy losses attributed to hold the metal at temperature. With the rapid melting times achieved, of the order of minutes, there isn't a long time at temperature for hydrogen to be absorbed or for thick layers of oxide to form. The metal is never allowed to fall under gravity and therefore any oxide formed is not entrained within the liquid. Thus higher quality castings are produced, leading to a reduction in scrap rate and therefore reduced overall energy losses.The first challenge in the project is to measure accurately the energy used at each stage in each of the processes investigated and to calculate the energy losses from oxidation and scrap. The second challenge is to incorporate this information into a model that can be used by casting designers and foundry engineers.
该项目旨在比较传统铸造工艺和新型单次铸造技术CRIMSON所使用的能源,并开发一个包含每个阶段能源含量的工艺模型。然后,这个模型可以用来说服铸造设计师使用更节能的工艺,同时考虑铸造质量和设计灵活性。英国在铜、铝和新型轻金属合金方面拥有全球公认的铸造专业知识,支撑着许多具有竞争力的、以技术为基础的行业,这些行业对保持英国的航空航天和汽车基地在竞争中处于领先地位至关重要。这些行业借鉴了伯明翰备受瞩目的铸造研究小组开展的先进研发工作。伯明翰大学多年来一直处于铸造研发的前沿。今天,它是国际公认的领跑者,而CRIMSON技术-约束快速感应熔炼单发法-就是一种这样的技术,它正在帮助铸造行业在产品质量,制造响应能力和能源使用方面做出一步改变。一个典型的轻金属铸铸厂将倾向于以以下方式工作:从100公斤到几吨的金属在第一个炉中熔化,在第二炉中保持在700摄氏度左右,转移到钢包中,最后倒入铸造模具。通常需要一个班次(8小时)才能用完所有的熔体,任何剩余的未使用的熔体都要倒出来再次使用,或者成为废料。质量问题也出现了,这必须得到缓解:在熔体保持在一定温度的时间内,大气中的水被还原为氢和氧。在这个温度下,氢极易溶于金属,但当铸件冷却并凝固时,氢气会喷射成气泡。气泡在固体铸件中变成孔隙,对性能有不利影响,因此,必须尽可能多地从熔体中除去气体。氧气在熔体表面形成一层薄薄的氧化物,当液态金属在不同的熔炉之间转移和最终浇注时,它不可避免地被夹带在液态金属中。氧化层(或双膜)现在是一种夹杂物,再次对材料性能产生有害影响。金属保持液态的时间越长,吸收的氢就越多,表面的氧化物也就越厚。在过程的每个阶段都有由于氧化和炉效率低下而造成的能量损失,铸件产量和最终报废。因此,从最初的理论1.1 GJ/吨熔融铝的需求,可以估计每吨铝铸件的实际运输将消耗约182 GJ/吨。CRIMSON的方法没有经过这批处理,而是使用一个大功率的熔炉,在一个封闭的坩埚里,一次熔化足够的金属来填充一个模具。它将坩埚转移到一个上浇铸站进行高度计算机控制的模具填充,对抗重力,以获得最佳的填充和凝固状态。因此,CRIMSON方法只保持液态铝的最短时间,从而大大减少了由于保持金属在温度下的能量损失。随着快速融化时间的实现,大约几分钟,在温度下,氢被吸收或形成厚层氧化物的时间并不长。金属不允许在重力作用下下落,因此形成的任何氧化物都不会被夹带在液体中。因此,可以生产出更高质量的铸件,从而降低废品率,从而减少整体能源损失。该项目的第一个挑战是准确测量所调查的每个过程中每个阶段使用的能量,并计算氧化和废料造成的能量损失。第二个挑战是将这些信息整合到铸造设计师和铸造工程师可以使用的模型中。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementation of Energy Saving and GHGs Emission Reduction in Investment Casting Process by Practical Application of a New Casting Method
新型铸造方法的实际应用实现熔模铸造过程节能减排
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Dai X
- 通讯作者:Dai X
Energy saving in the foundry industry by using the "CRIMSON" single shot up-casting process
使用“CRIMSON”单射向上铸造工艺实现铸造行业节能
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Jolly M.
- 通讯作者:Jolly M.
LIFE CYCLE ANALYSIS AND POTENTIAL ENERGY SAVING IN THE FOUNDRY INDUSTRY USING THE NOVEL "CRIMSON" SINGLE SHOT UPCASTING PROCESS
使用新型“CRIMSON”单射向上铸造工艺进行铸造行业的生命周期分析和潜在节能
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Jolly M
- 通讯作者:Jolly M
Energy efficiency improvement by implementation of the novel CRIMSON aluminium casting process
通过实施新型 CRIMSON 铝铸造工艺提高能源效率
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Jolly M.
- 通讯作者:Jolly M.
Shape Casting - 4th International Symposium 2011
成型铸造 - 2011 年第四届国际研讨会
- DOI:10.1002/9781118062050.ch32
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Dai X
- 通讯作者:Dai X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Jolly其他文献
An Experimental Characterization of Thermophysical Properties of a Porous Ceramic Shell Used in the Investment Casting Process
熔模铸造过程中使用的多孔陶瓷壳热物理性能的实验表征
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
C. A. Jones;Mark Jolly;A. Jarfors;Mark Irwin - 通讯作者:
Mark Irwin
Energy Benchmarking of Manufacturing Processes in Foundation Industries
基础工业制造过程的能源基准测试
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Sarfraz;Ziyad Sherif;Mark Jolly;K. Salonitis - 通讯作者:
K. Salonitis
Sand casting of sheet lead: numerical simulation of metal flow and solidification
- DOI:
10.1007/s00170-019-04522-3 - 发表时间:
2019-11-20 - 期刊:
- 影响因子:3.100
- 作者:
Arun Prabhakar;Michail Papanikolaou;Konstantinos Salonitis;Mark Jolly - 通讯作者:
Mark Jolly
A bespoke carbon footprint framework to set the path towards Net Zero in foundries
- DOI:
10.1016/j.procir.2024.10.210 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Rylan Cox;Emanuele Pagone;Mark Jolly;Konstantinos Salonitis;Tim Birch - 通讯作者:
Tim Birch
Exploring circular economy in the United Kingdom based on LinkedIn data from company profiles
基于公司简介的领英数据对英国循环经济的探索
- DOI:
10.1016/j.jclepro.2025.145355 - 发表时间:
2025-04-25 - 期刊:
- 影响因子:10.000
- 作者:
Georgios Tsironis;Rylan Cox;Mark Jolly;Konstantinos Salonitis;Konstantinos P. Tsagarakis - 通讯作者:
Konstantinos P. Tsagarakis
Mark Jolly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Jolly', 18)}}的其他基金
Transforming the Foundation Industries Research and Innovation Hub (TransFIRE)
转型基础产业研究与创新中心 (TransFIRE)
- 批准号:
EP/V054627/1 - 财政年份:2021
- 资助金额:
$ 65.5万 - 项目类别:
Research Grant
Energy Resilient Manufacturing 2: Small is Beautiful Phase 2 (SIB2)
能源弹性制造 2:小即是美第 2 阶段 (SIB2)
- 批准号:
EP/P012272/1 - 财政年份:2017
- 资助金额:
$ 65.5万 - 项目类别:
Research Grant
Energy saving in the Foundry Industry by Novel Single Shot Melting Process
通过新型单次熔化工艺实现铸造行业节能
- 批准号:
EP/G060096/2 - 财政年份:2012
- 资助金额:
$ 65.5万 - 项目类别:
Research Grant
Visiting Fellowship for Professor Matthew Krane: The Interaction of Solidification and Infiltration in Metal Matrix Composite Processing
Matthew Krane 教授访问学者:金属基复合材料加工中凝固与渗透的相互作用
- 批准号:
EP/E002498/1 - 财政年份:2006
- 资助金额:
$ 65.5万 - 项目类别:
Research Grant
相似海外基金
An innovative platform that uses bespoke algorithms to accurately match candidates to jobs, rewarding them and the referrer, and saving employers up to 66% per hire.
%20innovative%20platform%20that%20使用%20bespoke%20algorithms%20to%20accurately%20match%20candidates%20to%20jobs,%20rewarding%20them%20and%20the%20referrer,%20and%20 saving%20employers%20up%20to%2066%
- 批准号:
10094228 - 财政年份:2024
- 资助金额:
$ 65.5万 - 项目类别:
Collaborative R&D
A data-saving and self-supervised deep learning system for continuous ischemic stroke assessment
用于连续缺血性中风评估的数据保存和自我监督深度学习系统
- 批准号:
24K15011 - 财政年份:2024
- 资助金额:
$ 65.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
D-Xpert: AI-Based Recommender System for Smart Energy Saving
D-Xpert:基于人工智能的智能节能推荐系统
- 批准号:
10067341 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Collaborative R&D
Deployment of Scalable System Software for Machine Learning Technology to Saving Computing Resources
部署机器学习技术的可扩展系统软件以节省计算资源
- 批准号:
23H03369 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of energy-saving cyanobacteria based biodiesel production system using nanofiltration membrane
利用纳滤膜开发节能型蓝藻生物柴油生产系统
- 批准号:
23K19147 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Virtual Energy Manager - Commercial Buildings Energy Saving Expert
虚拟能源管家-商业建筑节能专家
- 批准号:
10064628 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Collaborative R&D
ScubaTx - Saving More Lives, Giving Transplant Organs Air to Breath
ScubaTx - 拯救更多生命,为移植器官提供呼吸空气
- 批准号:
10049578 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Investment Accelerator
Saving our Species: Creating Systemic Change in Regional Communities.
拯救我们的物种:在区域社区中创造系统性变革。
- 批准号:
LP220200839 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Linkage Projects
A Rugged, Reliable, Portable, Safe, and Simple Naloxone HCl Auto-Injector forLife-Saving Treatment of Opioid Overdose
坚固、可靠、便携式、安全且简单的盐酸纳洛酮自动注射器,用于挽救阿片类药物过量的生命治疗
- 批准号:
10764158 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Expansion of Adaptive Link Rate Switching Method between SDN Switches for Power Saving in Organization Networks
扩展 SDN 交换机之间的自适应链路速率切换方法,以实现组织网络的节能
- 批准号:
23K11081 - 财政年份:2023
- 资助金额:
$ 65.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)