In-depth Studies of OxyCoal Combustion Processes through Numerical Modelling and 3D Flame Imaging

通过数值模拟和 3D 火焰成像深入研究富氧煤燃烧过程

基本信息

  • 批准号:
    EP/G063451/1
  • 负责人:
  • 金额:
    $ 62.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Coal will likely remain in an important position in the world energy mix in the foreseeable future because of its stability in supply and low cost in production. However, coal fired power generation industry has to substantially reduce its pollutant emission to survive in the future carbon constrained energy market. Oxycoal combustion with CO2 capture from flue gas is an emerging technology that can be adapted to both new and existing coal-fired power stations leading to a substantial reduction in carbon emission. Various assessments suggest that oxycoal technology is feasible and more favourable than other CCS (Carbon Capture and Storage) technologies, such as post-carbon capture. Currently, oxycoal combustion technology is still in its laboratory and technology demonstration stages and there is a significant knowledge gap in this new technology. A number of uncertainties exist in the combustion process where the changes in the heat transfer and combustion characteristics are, among others, the major concerns. Issues with system designs such as the optimum oxygen concentrations and its impact need to be investigated. Other complications include such as high concentrations of sulphur and mercury and changes in deposition and corrosion in the boiler and the downstream elements. If the technology is to be widely adopted in power generation industry for CCS then it is imperative that the impacts of these changes in the combustion processes are well understood, and that economic solutions to mitigating the problems encountered are identified.The proposed research aims to achieve an in-depth understanding of the oxycoal combustion processes, to develop key modelling capabilities for process prediction, and to provide guidelines to the power generation industry on design new and/or retrofitting existing power plant with oxycoal combustion technology. Because of the high costs of performing large scale tests, process modelling is commonly used as an alternative in technology development. In this project, advanced Computational Fluid Dynamics (CFD) techniques will be employed to perform detailed simulations on the oxycoal combustion processes. Because the oxycoal combustion is very different from the conventional air-coal combustion, new oxycoal specific CFD sub-programmes will be developed in order to achieve accurate modelling results. In parallel to the CFD modelling, well controlled practical measurements will be carried out to setup a comprehensive database on the oxycoal combustion and to provide validation to the CFD model development. In addition, a unique 3D flame monitoring system will be developed to monitor the oxycoal combustion flames. This integrated approach of advanced computational modelling, detailed experimental testing, and 3D flame imaging forms a mutual validating and complementary system to ensure a credible research output so that an in-depth understanding of the impact of oxycoal on flame characteristics, critical reaction kinetics, and devolatilsation and char reaction in the combustion processes may be achieved.The project consortium comprises of three academic centres of expertise from Leeds, Kent and the Imperial College. Three leading energy research institutes in China are joint force on the research. Collaborative research programmes have been arranged to carryout experimental testing and theoretical simulation in both UK and China. The project has also gained strong supported from leading power generation companies and commercial CFD developer providing practical advice on oxycoal combustion tests and combustion model development. The project provides a platform for the leading UK groups and leading Chinese partners to work together in tackling the significant issues related to the oxycoal combustion technology, which is expected to contribute significantly in cutting the CO2 and other greenhouse gases emissions in the power industry in both countries.
在可预见的未来,煤炭由于其供应稳定和生产成本低,可能仍将在世界能源结构中占据重要地位。然而,燃煤发电行业必须大幅减少其污染物排放,才能在未来碳约束的能源市场中生存。富氧煤燃烧与从烟道气中捕获CO2是一种新兴技术,可适用于新的和现有的燃煤发电站,从而大幅减少碳排放。各种评估表明,氧煤技术是可行的,比其他CCS(碳捕获和储存)技术,如后碳捕获更有利。目前,富氧煤燃烧技术仍处于实验室和技术示范阶段,在这一新技术方面存在重大知识差距。燃烧过程中存在许多不确定性,其中传热和燃烧特性的变化是主要关注的问题。需要研究系统设计的问题,如最佳氧气浓度及其影响。其他复杂情况包括高浓度的硫和汞以及锅炉和下游元件中沉积和腐蚀的变化。如果该技术要在发电行业广泛采用CCS,那么就必须充分了解燃烧过程中这些变化的影响,并确定经济的解决方案来缓解遇到的问题。拟议的研究旨在深入了解氧煤燃烧过程,开发过程预测的关键建模能力,并为发电行业提供有关设计新发电厂和/或利用氧煤燃烧技术改造现有发电厂的指南。由于进行大规模试验的成本很高,工艺建模通常被用作技术开发的替代方法。在这个项目中,先进的计算流体动力学(CFD)技术将被用来进行详细的模拟氧煤燃烧过程。由于氧煤燃烧与传统的空气-煤燃烧有很大的不同,因此将开发新的氧煤特定CFD子程序,以获得准确的建模结果。在CFD建模的同时,将进行良好控制的实际测量,以建立一个关于氧煤燃烧的综合数据库,并为CFD模型开发提供验证。此外,还将开发一种独特的三维火焰监测系统来监测氧煤燃烧火焰。这种先进的计算建模、详细的实验测试和3D火焰成像的综合方法形成了一个相互验证和互补的系统,以确保可靠的研究成果,从而深入了解氧煤对火焰特性、临界反应动力学、以及在燃烧过程中的脱挥发分和焦炭反应。该项目联合体由三个专业学术中心组成来自利兹、肯特和帝国学院。中国三家领先的能源研究机构正在联合开展这项研究。合作研究计划已安排在英国和中国进行实验测试和理论模拟。该项目还得到了领先的发电公司和商业CFD开发商的大力支持,为氧煤燃烧试验和燃烧模型开发提供实用建议。该项目为英国领先集团和中国领先合作伙伴提供了一个平台,共同解决与氧煤燃烧技术相关的重大问题,预计该技术将为减少两国电力行业的二氧化碳和其他温室气体排放做出重大贡献。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of FSK models for radiative heat transfer under oxyfuel conditions
富氧条件下辐射传热的 FSK 模型评估
OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK
OxyCAP UK:富氧燃料燃烧 - 英国学术项目
  • DOI:
    10.1016/j.egypro.2014.11.055
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chalmers H
  • 通讯作者:
    Chalmers H
Some Aspects of Modeling NOx Formation Arising from the Combustion of 100% Wood in a Pulverized Fuel Furnace
  • DOI:
    10.1080/00102202.2014.883834
  • 发表时间:
    2014-04
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    L. I. Darvell;L. Ma;J. M. Jones;M. Pourkashanian;A. Williams
  • 通讯作者:
    L. I. Darvell;L. Ma;J. M. Jones;M. Pourkashanian;A. Williams
Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets
  • DOI:
    10.1016/j.apenergy.2016.12.120
  • 发表时间:
    2017-03-15
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Bhave, Amit;Taylor, Richard H. S.;Akroyd, Jethro
  • 通讯作者:
    Akroyd, Jethro
Numerical simulation and experimental validation of the hydrodynamics in a 350 kW bubbling fluidized bed combustor
350 kW鼓泡流化床燃烧器流体动力学的数值模拟和实验验证
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohamed Pourkashanian其他文献

Techno economic and life cycle assessment of olefin production through COsub2/sub hydrogenation within the power-to-X concept
在“电转 X”概念下通过二氧化碳加氢生产烯烃的技术经济和生命周期评估
  • DOI:
    10.1016/j.jclepro.2024.143143
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Gabriela A. Cuevas-Castillo;Stavros Michailos;Muhammad Akram;Kevin Hughes;Derek Ingham;Mohamed Pourkashanian
  • 通讯作者:
    Mohamed Pourkashanian
Dynamic models for air-breathing and conventional polymer electrolyte fuel cells: A comparative study
  • DOI:
    10.1016/j.renene.2022.06.092
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fatma Calili-Cankir;Mohammed S. Ismail;Mohamed R. Berber;Ziyad A. Alrowaili;Derek B. Ingham;Kevin J. Hughes;Lin Ma;Mohamed Pourkashanian
  • 通讯作者:
    Mohamed Pourkashanian
A comprehensive process modelling, techno-economic and life cycle assessment of a power to ammonia process
一项针对电制氨工艺的综合流程建模、技术经济分析及生命周期评估
  • DOI:
    10.1016/j.seta.2025.104278
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    7.000
  • 作者:
    Gabriela A. Cuevas-Castillo;Stavros Michailos;Kevin Hughes;Derek Ingham;Mohamed Pourkashanian
  • 通讯作者:
    Mohamed Pourkashanian
Conceptual design and thermodynamic investigation of novel energy and fuel generation systems from municipal waste coupled with carbon capture and storage
基于城市废弃物并结合碳捕获与封存的新型能源和燃料生成系统的概念设计与热力学研究
  • DOI:
    10.1016/j.nexus.2025.100460
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    9.500
  • 作者:
    Qurrotin Ayunina Maulida Okta Arifianti;Stavros Michailos;Maria Fernanda Rojas Michaga;Karim Rabea;Kevin J Hughes;Lin Ma;Derek Ingham;Mohamed Pourkashanian
  • 通讯作者:
    Mohamed Pourkashanian
Numerical Simulation of the Chemical Combination and Dissociation Reactions of Neutral Particles in a Rarefied Plasma Arc Jet
稀薄等离子弧射流中中性粒子化学化合和解离反应的数值模拟
  • DOI:
    10.1109/tps.2017.2659735
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Derek Ingham;Lin Ma;Ning Wang;Mohamed Pourkashanian
  • 通讯作者:
    Mohamed Pourkashanian

Mohamed Pourkashanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohamed Pourkashanian', 18)}}的其他基金

Impact of High Concentrations of SO2 and SO3 in Carbon Capture Applications and its Mitigation
高浓度 SO2 和 SO3 在碳捕获应用中的影响及其缓解措施
  • 批准号:
    TS/G002002/1
  • 财政年份:
    2009
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Research Grant
Oxyfuel Combustion - Academic Programme for the UK
富氧燃烧 - 英国学术项目
  • 批准号:
    EP/G062153/1
  • 财政年份:
    2009
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Research Grant
Optimisation of Biomass/Coal Co-Firing Processes through Integrated Measurement and Computational Modelling
通过集成测量和计算模型优化生物质/煤混烧过程
  • 批准号:
    EP/F061188/1
  • 财政年份:
    2008
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Research Grant

相似海外基金

Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
  • 批准号:
    502607
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
  • 批准号:
    DE240101106
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Discovery Early Career Researcher Award
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006232/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Research Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Continuing Grant
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Continuing Grant
Maximizing the Impact of Engineering Laboratory Studies to Transform Undergraduate Engineering Curriculum and Advance Student Outcomes
最大限度地发挥工程实验室研究的影响,改变本科工程课程并提高学生的成绩
  • 批准号:
    2337194
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Standard Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.51万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了