Quantum wells and electrical contacts at polar oxide surfaces

极性氧化物表面的量子阱和电接触

基本信息

  • 批准号:
    EP/G067422/1
  • 负责人:
  • 金额:
    $ 16.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Modern technologies rely on the ability to grow or fabricate materials of ever decreasing size such that devices and structures built up from them can operate faster and more efficiently. However, as these materials are reduced in size there comes a point where their properties change from what is commonly observed for bulk materials to a new behaviour that depends on the size of the structure in a particular direction. In this project we will investigate how very thin metal films grow on a crystal of another material. This other material is zinc oxide and is commonly used as a white pigment in paper or as an antiseptic in would dressings but it has some rather special properties. It can be made to be electrically conducting yet transparent so is useful for display technologies and solar panels; it can be made to emit laser light at high energy and also tends to grow in to very long thin wires which makes it useful as a gas sensor. All of these applications require an electrical contact to be made to the surface of the zinc oxide. Making such a contact is not generally easy as most metals do not wet oxide surfaces and tend to roll up into little balls (like water on an oily surface). However, zinc oxide is unusual as a combination of crystal structure (how the atoms are arranged in the crystal) and the charge on each atom leads to the formation of two surfaces on opposite sides of the crystal upon which metals do tend to wet (ie they spread out very thinly like oil on water). This unusual property means it is easy to grow very large but very thin metal layers, so thin in fact that their properties depend directly on their thickness. By controlling the thickness we can tune the properties of the film and effect electrical conduction, magnetic properties of the metal and chemical reactivity of the metal. In this project we will discover why metals spread out on these sort of surfaces and how to tune their properties so we can make useful devices and catalysts in the future which speed up devices, reduce our energy consumption or enable us to manufacture low carbon, efficient fuels and chemicals.
现代技术依赖于生长或制造尺寸不断减小的材料的能力,使得由它们构建的设备和结构可以更快,更有效地运行。然而,随着这些材料的尺寸减小,它们的性质从通常观察到的块状材料的性质改变为取决于特定方向上的结构尺寸的新行为。在这个项目中,我们将研究非常薄的金属薄膜如何在另一种材料的晶体上生长。另一种材料是氧化锌,通常用作纸张中的白色颜料或敷料中的防腐剂,但它有一些相当特殊的性能。它可以被制成导电但透明的,因此可用于显示技术和太阳能电池板;它可以发射高能量的激光,也倾向于生长成非常长的细线,这使得它可用作气体传感器。所有这些应用都需要与氧化锌表面形成电接触。进行这种接触通常并不容易,因为大多数金属不会润湿氧化物表面,并且倾向于卷成小球(就像水在油性表面上一样)。然而,氧化锌是不寻常的,因为晶体结构(原子在晶体中的排列方式)和每个原子上的电荷的组合导致在晶体的相对侧形成两个表面,金属在晶体上倾向于润湿(即它们像水上的油一样非常薄)。这种不寻常的特性意味着很容易生长出非常大但非常薄的金属层,事实上,它们的特性直接取决于它们的厚度。通过控制厚度,我们可以调节膜的性质并影响金属的导电性、磁性和金属的化学反应性。在这个项目中,我们将发现为什么金属会在这些表面上扩散,以及如何调整它们的特性,以便我们在未来制造有用的设备和催化剂,从而加快设备的速度,减少能源消耗,或使我们能够制造低碳,高效的燃料和化学品。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural, electronic and magnetic studies of polar zinc oxide surfaces and their interfaces with ultra-thin cobalt films
极性氧化锌表面及其与超薄钴膜界面的结构、电子和磁性研究
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deacon Liam Matthew
  • 通讯作者:
    Deacon Liam Matthew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Bennett其他文献

The impact of ethnocentrism on perceived reputation and emotional liking of artworks: A comparative analysis
Foreword by the Guest Editors
  • DOI:
    10.1057/palgrave.crr.1540200
  • 发表时间:
    2003-10-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Roger Bennett;Ruth Rentschler
  • 通讯作者:
    Ruth Rentschler
Entry strategies for ‘planned giving’ donor products adopted by British charities: An empirical investigation
Elements, causes and effects of donor engagement among supporters of UK charities
Factors Influencing the Break Even Probabilities of Agency Recruited Low Value Charity Donors
  • DOI:
    10.1007/s11266-012-9314-9
  • 发表时间:
    2012-07-12
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Roger Bennett
  • 通讯作者:
    Roger Bennett

Roger Bennett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向波浪能Wells涡轮的瞬态流动非线性降维-预测方法与非模态失速机理研究
  • 批准号:
    52376022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Towards Evaluating and Managing Risks Associated with Legacy Wells and Offshore Gas Storage in Scotland
评估和管理与苏格兰传统油井和海上天然气储存相关的风险
  • 批准号:
    2902920
  • 财政年份:
    2024
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
Lifetime optimisation of multiple deep closed-loop geothermal wells
多口深闭环地热井寿命优化
  • 批准号:
    2890095
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
Heavy-metal-free colloidal quantum wells as efficient and spectrally narrow emitters for displays, biomarkers and single photon sources
不含重金属的胶体量子阱作为显示器、生物标记物和单光子源的高效窄光谱发射器
  • 批准号:
    2887761
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Studentship
RAPID: Elucidating the fate of VOCs and SVOCs in drinking water wells and household water plumbing systems following the East Palestine chemical accident
RAPID:阐明东巴勒斯坦化学事故后饮用水井和家庭供水管道系统中 VOC 和 SVOC 的归宿
  • 批准号:
    2327139
  • 财政年份:
    2023
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Standard Grant
Multiphysics Phenomena on the Long-term Performance of Enhanced Geothermal Wells
增强型地热井长期性能的多物理现象
  • 批准号:
    547488-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Orphan Wells as an Energy Storage Solution
孤井作为储能解决方案
  • 批准号:
    571079-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Applied Research and Development Grants - Level 2
Uncovering Energy and Charge Transport Mechanisms in Organic-Inorganic Hybrid Perovskite Quantum Wells with Nonlinear Action Spectroscopies
利用非线性作用光谱揭示有机-无机杂化钙钛矿量子阱中的能量和电荷传输机制
  • 批准号:
    2154791
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Standard Grant
PFI-TT: A Rapid Multi-Contaminant Degradation System for Water Wells
PFI-TT:水井多污染物快速降解系统
  • 批准号:
    2141162
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Standard Grant
Oil and Veg- Exploring the potential for repurposing oil & gas wells for heating protected horticulture
石油和蔬菜——探索石油再利用的潜力
  • 批准号:
    10019424
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Collaborative R&D
PATHways for PATHogens and antimicrobial resistance in Wells ( PATH -2- Well study)
井中病原体和抗菌素耐药性的途径(路径 -2- 井研究)
  • 批准号:
    RGPIN-2022-03447
  • 财政年份:
    2022
  • 资助金额:
    $ 16.18万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了