Measurement and modelling of ingress through gas turbine rim seals

通过燃气轮机边缘密封件进入的测量和建模

基本信息

  • 批准号:
    EP/G069107/1
  • 负责人:
  • 金额:
    $ 36.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The gas turbine engine is an adaptable source of power and has been used for a wide variety of applications, ranging from the generation of electric power and jet propulsion to the supply of compressed air and heat. Competition within the industry and, more recently, environmental legislation from government have exerted pressure on engine manufacturers to produce ever more cleaner and efficient products.The most important parameter in governing engine performance and life cycle operating costs is the overall efficiency. High cycle efficiency depends on a high turbine entry temperature and an appropriately high pressure ratio across the compressor. The life of turbine components (vanes, blades and discs) at these hot temperatures is limited primarily by creep, oxidation or by thermal fatigue. It is only possible for the turbine to operate using these elevated mainstream gas temperatures (as hot as 1800 K) because its components are protected by relatively cool air (typically 800 K) taken from the compressor. However, this cooling comes at a cost: as much as 15-25% of the compressor air bypasses combustion to provide the required coolant to the combustor and turbine stages. Ingress is one of the most important of the cooling-air problems facing engine designers, and considerable international research effort has been devoted to finding acceptable design criteria. Ingress occurs when hot gas from the mainstream gas path is ingested into the wheel-space between the turbine disc and its adjacent casing. Rim seals are fitted at the periphery of the system, and a sealing flow of coolant is used to reduce or prevent ingress. However, too much sealing air reduces the engine efficiency, and too little can cause serious overheating, resulting in damage to the turbine rim and blade roots. It is proposed to build a new rotating-disc rig to measure the flow structure and heat transfer characteristics of hot gas ingress in an engine-representative model of a gas-turbine wheel-space. The rig will feature generic engine geometries; it will be fully-instrumented and specifically designed for optical access. An annular, single-stage turbine will create an unsteady circumferential distribution of pressure, which in turn will create the ingestion of hot air in the wheel-space. Fast-response thermocouples and thermochromic liquid crystal in conjunction with a stroboscopic light will be used in thermal transient experiments to measure the temperature of the rotating disc, the stator and the air inside the wheel-space of the rig. Miniature pressure transducers, pressure taps, pitot tubes, and concentration probes will also be used inside the seal annulus and in the wheel-space. In addition, a theoretical model of ingress will be developed and validated using the experimental data collected. This ingress model will be used to obtain correlations of cooling effectiveness and surface temperatures. More generally, the research will provide fundamental insight into the thermal effects of ingress in gas turbines and in turn inform the design of internal air systems.
燃气涡轮机发动机是一种适应性强的动力源,已广泛用于各种应用,从发电和喷气推进到供应压缩空气和热量。行业内的竞争以及最近政府颁布的环境法规对发动机制造商施加了压力,要求他们生产更加清洁高效的产品。控制发动机性能和生命周期运行成本的最重要参数是整体效率。高循环效率取决于高的涡轮机入口温度和压气机两端的适当高的压力比。涡轮机部件(轮叶、叶片和盘)在这些高温下的寿命主要受到蠕变、氧化或热疲劳的限制。涡轮机仅可能使用这些升高的主流气体温度(热至1800 K)来操作,因为其部件受到从压缩机获取的相对冷的空气(通常为800 K)的保护。然而,这种冷却是有代价的:多达15-25%的压缩机空气绕过燃烧,以向燃烧室和涡轮机级提供所需的冷却剂。进气是发动机设计人员面临的最重要的冷却空气问题之一,国际上已经进行了大量的研究工作,以找到可接受的设计标准。当来自主流气体路径的热气体被吸入到涡轮机盘与其相邻壳体之间的叶轮空间中时,发生进入。在系统的外围安装有边缘密封件,并且使用冷却剂的密封流来减少或防止进入。但是,密封空气过多会降低发动机效率,而过少则会导致严重过热,导致涡轮机轮缘和叶片根部受损。提出了一种新的涡轮盘试验装置,用于测量燃气轮机叶轮空间的发动机代表模型中热气体进入的流动结构和传热特性。该装置将采用通用的发动机几何形状;它将完全仪表化,并专门为光学访问而设计。环形单级涡轮机将产生不稳定的周向压力分布,这又将在叶轮空间中产生热空气的吸入。快速响应热电偶和热致变色液晶与频闪灯一起将用于热瞬态实验,以测量旋转盘、定子和试验台轴距内空气的温度。微型压力传感器、测压孔、皮托管和浓度探头也将用于密封环和轴距内。此外,还将利用收集到的实验数据,开发并验证一个理论模型。该入口模型将用于获得冷却效率和表面温度的相关性。更一般地说,该研究将为燃气轮机入口的热效应提供基本见解,并反过来为内部空气系统的设计提供信息。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Ingress on Turbine Disks
入口对涡轮盘的影响
Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals
Theoretical Model to Determine Effect of Ingress on Turbine Discs
确定侵入对涡轮盘影响的理论模型
  • DOI:
    10.1115/gt2015-42326
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mear L
  • 通讯作者:
    Mear L
Effect of Ingress on Turbine Discs
  • DOI:
    10.1115/gt2015-42324
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Geonhwan Cho;C. Sangan;J. Owen;G. Lock
  • 通讯作者:
    Geonhwan Cho;C. Sangan;J. Owen;G. Lock
Prediction of Ingress Through Turbine Rim Seals: Part 2-Combined Ingress
通过涡轮机边缘密封件侵入的预测:第 2 部分 - 组合侵入
  • DOI:
    10.1115/gt2010-23349
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Owen J
  • 通讯作者:
    Owen J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GD Lock其他文献

GD Lock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GD Lock', 18)}}的其他基金

Buoyancy-Induced Flow and Heat Transfer inside Compressor Rotors
压缩机转子内的浮力诱导流动和传热
  • 批准号:
    EP/P003702/1
  • 财政年份:
    2017
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Research Grant
Experimental and theoretical modelling of hot-gas ingestion through gas-turbine rim seals
通过燃气轮机边缘密封吸入热气的实验和理论模型
  • 批准号:
    EP/J014826/1
  • 财政年份:
    2013
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Research Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
  • 批准号:
    DP240101009
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Discovery Projects
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Discovery Early Career Researcher Award
Anti-infective therapeutics and predictive modelling to tackle Staphylococcus aureus disease
应对金黄色葡萄球菌疾病的抗感染疗法和预测模型
  • 批准号:
    EP/X022935/2
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Fellowship
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Fellowship
Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
  • 批准号:
    EP/X032019/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Research Grant
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Fellowship
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/Y000145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Research Grant
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
  • 批准号:
    10071797
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Collaborative R&D
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    EU-Funded
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
  • 批准号:
    10097766
  • 财政年份:
    2024
  • 资助金额:
    $ 36.01万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了