Active Plasmonics: Electronic and All-optical Control of Photonic Signals on Sub-wavelength Scales

主动等离子体激元:亚波长尺度上光子信号的电子和全光控制

基本信息

  • 批准号:
    EP/H000917/1
  • 负责人:
  • 金额:
    $ 659.61万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The term 'plasmonics' refers to the science and technology dealing with manipulation of electromagnetic signals by coherent coupling of photons to free electron oscillations at the interface between a conductor and a dielectric. This field of research has emerged as an extremely promising technology with several main fields of application: information technologies, energy, high-density data storage, life sciences and security. The opportunity to guide light in the form of surface plasmon waves on metallic films is attractive for the development of integrated photonic chips where the information can be processed all-optically without the need of electronic-to-optical and optical-to-electronic conversion, as well as for integrating photonics with silicon electronics on a fully compatible platform. Performance of optoelectronic devices, such as light emitting diodes and photodetectors, can also be improved by integrating them with plasmonic nanostructures. Recent research in plasmonics has led to significant progress in development of various passive plasmonic components, such as waveguides, plasmonic crystals, plasmonic metamaterials, with tailored photonic properties. Plasmonic studies have, however, almost exclusively concentrated on pure metallic nanostructures and passive devices with properties fixed by the nanostructure parameters. At the same time, real-life applications require active control to achieve signal switching and modulation, amplification to compensate losses along with the direct generation and detection of plasmons. All these can be realised if plasmonic nanostructures are hybridised with functional (molecular or ferroelectric) materials. Here we propose to develop and study hybrid plasmonic nanostructures consisting of nanostructured metals combined with dielectrics to enable active functionalities in plasmonic circuitry. This project will unlock the plasmonics' potential for improvement of real-world photonic and optoelectronic devices and provide insight into physical phenomena which are important for various areas of optical physics and photonic technologies.
术语“等离子体激元学”是指通过在导体和电介质之间的界面处将光子相干耦合到自由电子振荡来处理电磁信号的科学和技术。这一研究领域已成为一项非常有前途的技术,有几个主要应用领域:信息技术,能源,高密度数据存储,生命科学和安全。在金属膜上以表面等离子体波的形式引导光的机会对于集成光子芯片的开发是有吸引力的,在集成光子芯片中,信息可以被全光学地处理而不需要电子到光学和光学到电子的转换,以及用于在完全兼容的平台上将光子学与硅电子学集成。光电器件,如发光二极管和光电探测器的性能也可以通过将它们与等离子体纳米结构集成来改善。等离子体激元学的最新研究已经在开发具有定制光子特性的各种无源等离子体激元部件(诸如波导、等离子体激元晶体、等离子体激元超材料)方面取得了重大进展。然而,等离子体激元研究几乎完全集中在纯金属纳米结构和具有由纳米结构参数固定的性质的无源器件上。同时,实际应用需要主动控制来实现信号切换和调制、放大以补偿沿着等离子体激元的直接产生和检测的损耗。所有这些都可以实现,如果等离子体纳米结构与功能(分子或铁电)材料杂交。在这里,我们建议开发和研究混合等离子体纳米结构组成的纳米结构的金属结合,使等离子体电路中的活性功能。该项目将释放等离子体的潜力,改善现实世界的光子和光电器件,并提供洞察物理现象,这是重要的光学物理和光子技术的各个领域。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder
  • DOI:
    10.1103/physrevb.82.125430
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    A. Aubry;D. Lei;S. Maier;J. Pendry
  • 通讯作者:
    A. Aubry;D. Lei;S. Maier;J. Pendry
Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies
  • DOI:
    10.1021/jp404535x
  • 发表时间:
    2013-09-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Aouani, Heykel;Rahmani, Mohsen;Maier, Stefan A.
  • 通讯作者:
    Maier, Stefan A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anatoly Zayats其他文献

Anatoly Zayats的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anatoly Zayats', 18)}}的其他基金

New perspectives in photocatalysis and near-surface chemistry: catalysis meets plasmonics
光催化和近表面化学的新视角:催化遇上等离子体激元
  • 批准号:
    EP/W017075/1
  • 财政年份:
    2022
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Research Grant
REACTIVE PLASMONICS: OPTICAL CONTROL OF ELECTRONIC PROCESSES AT INTERFACES FOR NANOSCALE PHYSICS, CHEMISTRY AND METROLOGY
反应等离子体激元:纳米级物理、化学和计量学接口电子过程的光学控制
  • 批准号:
    EP/M013812/1
  • 财政年份:
    2015
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Research Grant
Materials World Network: Understanding the Optical Response of Designer Epsilon-Near-Zero Materials
材料世界网络:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    EP/J018457/1
  • 财政年份:
    2013
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Research Grant
Design of plasmonic nanostructures for an enhanced control over their ultrafast nonlinear optical response.
设计等离子体纳米结构,以增强对其超快非线性光学响应的​​控制。
  • 批准号:
    EP/J015393/1
  • 财政年份:
    2013
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Research Grant
Active Plasmonics: Electronic and All-optical Control of Photonic Signals on Sub-wavelength Scales
主动等离子体激元:亚波长尺度上光子信号的电子和全光控制
  • 批准号:
    EP/H000917/2
  • 财政年份:
    2010
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Research Grant
Surface plasmon devices for applications in communication and signal processing
用于通信和信号处理应用的表面等离子体激元器件
  • 批准号:
    EP/E009948/1
  • 财政年份:
    2007
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Research Grant

相似海外基金

Study of Plasmonics in Hybrid Nanostructures
混合纳米结构中的等离激元研究
  • 批准号:
    RGPIN-2018-05646
  • 财政年份:
    2022
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
  • 批准号:
    RGPIN-2020-03999
  • 财政年份:
    2022
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Discovery Grants Program - Individual
New perspectives in photocatalysis and near-surface chemistry: catalysis meets plasmonics
光催化和近表面化学的新视角:催化遇上等离子体激元
  • 批准号:
    EP/W017075/1
  • 财政年份:
    2022
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Research Grant
Advanced Topological materials for Plasmonics
用于等离子体激元的先进拓扑材料
  • 批准号:
    2751065
  • 财政年份:
    2022
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Studentship
FUNDAMENTALS AND APPLICATIONS OF PLASMONICS AND ULTRAFAST LASERS IN THERANOSTIC NANOMEDECINE
等离激元和超快激光在治疗纳米医学中的基础知识和应用
  • 批准号:
    RGPIN-2018-05288
  • 财政年份:
    2022
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrasensitive biosensor based on mechanically tunable chiral plasmonics
基于机械可调手性等离子体的超灵敏生物传感器
  • 批准号:
    22H03685
  • 财政年份:
    2022
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Light-Directed Synthesis of Metal Nanocrystal Dimers for Scalable Precision Plasmonics
用于可扩展精密等离子体激元的金属纳米晶体二聚体的光引导合成
  • 批准号:
    2109067
  • 财政年份:
    2021
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Standard Grant
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
  • 批准号:
    RGPIN-2020-03999
  • 财政年份:
    2021
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Plasmonics in Hybrid Nanostructures
混合纳米结构中的等离激元研究
  • 批准号:
    RGPIN-2018-05646
  • 财政年份:
    2021
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Discovery Grants Program - Individual
FUNDAMENTALS AND APPLICATIONS OF PLASMONICS AND ULTRAFAST LASERS IN THERANOSTIC NANOMEDECINE
等离激元和超快激光在治疗纳米医学中的基础知识和应用
  • 批准号:
    RGPIN-2018-05288
  • 财政年份:
    2021
  • 资助金额:
    $ 659.61万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了