Design of plasmonic nanostructures for an enhanced control over their ultrafast nonlinear optical response.

设计等离子体纳米结构,以增强对其超快非线性光学响应的​​控制。

基本信息

  • 批准号:
    EP/J015393/1
  • 负责人:
  • 金额:
    $ 47.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

After a decade of existence, and driven by a remarkable expansion in research and development, plasmonics -the technology that exploit the unique optical properties of metallic nanostructures to enable routing and actively manipulating light at the nanoscale- has entered a defining period in which researchers will seek to answer a critical question: can plasmonics provide a viable technological platform which includes both passive and active nanodevices? The design of these devices is driven by a two-fold objective: 1) to manipulate electromagnetic energy at the nanoscale, including harvesting, guiding and transferring energy, with high lateral confinement down to a few tens of nanometers, and 2) to generate ultrafast (a few femtoseconds) and strong non-linear effects with low operating powers to produce basic active functions such as transistor or lasing actions. Utilizing the resonant properties -field enhancement and spectral sensitivity- of Surface Plasmons Polaritons (SPPs) is generally thought to represent a practical avenue to achieving this objective. However, our ability to control and manipulate light at this scale dynamically -i.e. to produce active functionalities- and in real-time through low-energy external control signals is a missing link in our aim to develop a fully integrated sub-wavelength optical platform. To date, active plasmonic systems, including thermo- and electro-optic media, quantum dots, and photochromic molecules, are achieving sensitive progress in switching and modulation applications. However, high switching times (>nanosecond) or the need for relatively strong control energy (~microJ/cm^2) to observe sensible signal modulation (35% to 80%), limit the practical use of such structures as signal processing or other active opto-electronic nanodevices.In this context, this research aims to assess the potential for defects to enhance the non-linear optical properties of hybrid plasmonic crystals. The objective is to integrate defects, made of plasmonic cavities, in plasmonic crystals to create a focal point for electromagnetic energy stored in surface plasmon waves at the crystal's interfaces. The role of the defect is then to transfer this energy to a neighbouring non-linear material in order to change its optical properties at the femtosecond timescale, thus creating an active functionality. This research, largely based on ultrafast time-resolved near-field optical microscopy, is also expected to enhance our understanding of ultrafast energy transfers at the nanoscale- a critical expertise in designing nanodevices.
经过十年的存在,并在研究和开发的显着扩张的驱动下,等离子体-利用金属纳米结构的独特光学特性,使路由和主动操纵光在纳米级的技术-已经进入了一个决定性的时期,研究人员将寻求回答一个关键问题:等离子体能提供一个可行的技术平台,其中包括被动和主动纳米器件?这些器件的设计受到双重目标的驱动:1)在纳米级操纵电磁能量,包括收集,引导和转移能量,具有低至几十纳米的高横向限制,以及2)以低操作功率产生超快(几飞秒)和强非线性效应,以产生基本的有源功能,如晶体管或激光作用。利用表面等离子体激元(SPP)的共振特性-场增强和光谱灵敏度-通常被认为是实现这一目标的实用途径。然而,我们在这种规模下动态控制和操纵光的能力-即产生有源功能-以及通过低能量外部控制信号实时控制和操纵光的能力是我们开发完全集成的亚波长光学平台的目标中缺少的一环。迄今为止,包括热光和电光介质、量子点和光致变色分子在内的主动等离子体系统在开关和调制应用中取得了敏感的进展。然而,高开关时间(>纳秒)或需要相对较强的控制能量(~微J/cm ^2)来观察敏感的信号调制(35%至80%),限制了这种结构作为信号处理或其他有源光电纳米器件的实际应用。目的是将由等离子体腔体制成的缺陷集成到等离子体晶体中,以在晶体的界面处为存储在表面等离子体波中的电磁能量创建焦点。然后,缺陷的作用是将这种能量转移到相邻的非线性材料,以便在飞秒时间尺度上改变其光学特性,从而产生活性功能。这项研究主要基于超快时间分辨近场光学显微镜,也有望提高我们对纳米级超快能量转移的理解-这是设计纳米器件的关键专业知识。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear propagation of surface plasmon-polaritons in gold stripe waveguides
金条波导中表面等离子体激元的非线性传播
  • DOI:
    10.1109/caol.2016.7851419
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lavrinenko A
  • 通讯作者:
    Lavrinenko A
Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures.
  • DOI:
    10.1038/ncomms11497
  • 发表时间:
    2016-05-09
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Krasavin AV;Ginzburg P;Wurtz GA;Zayats AV
  • 通讯作者:
    Zayats AV
Nonlinear Goniometry by Second-Harmonic Generation in AlGaAs Nanoantennas
  • DOI:
    10.1021/acsphotonics.8b00810
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Carletti, Luca;Marino, Giuseppe;Neshev, Dragomir N.
  • 通讯作者:
    Neshev, Dragomir N.
Two-Dimensional Pulse Propagation without Anomalous Dispersion.
无反常色散的二维脉冲传播。
  • DOI:
    10.1103/physrevlett.119.114301
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bender CM
  • 通讯作者:
    Bender CM
Nonperturbative Hydrodynamic Model for Multiple Harmonics Generation in Metallic Nanostructures
  • DOI:
    10.1021/ph500362y
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Ginzburg, Pavel;Krasavin, Alexey V.;Zayats, Anatoly V.
  • 通讯作者:
    Zayats, Anatoly V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anatoly Zayats其他文献

Anatoly Zayats的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anatoly Zayats', 18)}}的其他基金

New perspectives in photocatalysis and near-surface chemistry: catalysis meets plasmonics
光催化和近表面化学的新视角:催化遇上等离子体激元
  • 批准号:
    EP/W017075/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Research Grant
REACTIVE PLASMONICS: OPTICAL CONTROL OF ELECTRONIC PROCESSES AT INTERFACES FOR NANOSCALE PHYSICS, CHEMISTRY AND METROLOGY
反应等离子体激元:纳米级物理、化学和计量学接口电子过程的光学控制
  • 批准号:
    EP/M013812/1
  • 财政年份:
    2015
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Research Grant
Materials World Network: Understanding the Optical Response of Designer Epsilon-Near-Zero Materials
材料世界网络:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    EP/J018457/1
  • 财政年份:
    2013
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Research Grant
Active Plasmonics: Electronic and All-optical Control of Photonic Signals on Sub-wavelength Scales
主动等离子体激元:亚波长尺度上光子信号的电子和全光控制
  • 批准号:
    EP/H000917/2
  • 财政年份:
    2010
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Research Grant
Active Plasmonics: Electronic and All-optical Control of Photonic Signals on Sub-wavelength Scales
主动等离子体激元:亚波长尺度上光子信号的电子和全光控制
  • 批准号:
    EP/H000917/1
  • 财政年份:
    2009
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Research Grant
Surface plasmon devices for applications in communication and signal processing
用于通信和信号处理应用的表面等离子体激元器件
  • 批准号:
    EP/E009948/1
  • 财政年份:
    2007
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Research Grant

相似国自然基金

Plasmonic纳米孔光电同步传感用于肿瘤细胞外泌体单颗粒多参数检测的研究
  • 批准号:
    22304162
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于协同耦合策略构筑超灵敏plasmonic PEC纳米生物传感器的研究
  • 批准号:
    22004002
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
细菌视紫红质/Ag-M plasmonic杂化纳米生物电极用于痕量TNT电化学检测
  • 批准号:
    21605057
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于外在超手性Plasmonic纳米结构的生物分子构象传感技术研究
  • 批准号:
    11604227
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于plasmonic杂化纳米结构的新型化学和生物传感研究
  • 批准号:
    21475125
  • 批准年份:
    2014
  • 资助金额:
    87.0 万元
  • 项目类别:
    面上项目
单个固态plasmonic纳米孔基单分子电分析化学研究
  • 批准号:
    21175125
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
金属表面等离极化激元(SPP)和局域表面等离激元(LSP)耦合效应的光学性质研究
  • 批准号:
    11104032
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Growth Engineering of Plasmonic Nanostructures with ALD
ALD 等离子纳米结构的生长工程
  • 批准号:
    2232057
  • 财政年份:
    2023
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Standard Grant
Creating Chirality by Magnetic Assembly of Plasmonic Nanostructures
通过等离子体纳米结构的磁性组装创造手性
  • 批准号:
    2203972
  • 财政年份:
    2022
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Standard Grant
CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
  • 批准号:
    2202268
  • 财政年份:
    2022
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Continuing Grant
Structural Effects on the Plasmonic and Phononic Properties of Low Dimension Nanostructures
结构对低维纳米结构等离激元和声子性质的影响
  • 批准号:
    RGPIN-2019-07143
  • 财政年份:
    2022
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Discovery Grants Program - Individual
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
  • 批准号:
    10640258
  • 财政年份:
    2021
  • 资助金额:
    $ 47.8万
  • 项目类别:
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
  • 批准号:
    10179915
  • 财政年份:
    2021
  • 资助金额:
    $ 47.8万
  • 项目类别:
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
  • 批准号:
    10455426
  • 财政年份:
    2021
  • 资助金额:
    $ 47.8万
  • 项目类别:
Structural Effects on the Plasmonic and Phononic Properties of Low Dimension Nanostructures
结构对低维纳米结构等离激元和声子性质的影响
  • 批准号:
    RGPIN-2019-07143
  • 财政年份:
    2021
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Discovery Grants Program - Individual
Graphene Plasmonic Nanostructures for Terahertz Light Emission
用于太赫兹光发射的石墨烯等离子体纳米结构
  • 批准号:
    2111160
  • 财政年份:
    2021
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Standard Grant
Development of Quantum Dot LED with plasmonic metal nanostructures
开发具有等离子体金属纳米结构的量子点LED
  • 批准号:
    20K05441
  • 财政年份:
    2020
  • 资助金额:
    $ 47.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了