DEVELOPMENT AND APPLICATION OF PHOTOACOUSTIC IMAGING FOR THE CLINICAL AND LIFE SCIENCES

光声成像在临床和生命科学中的发展和应用

基本信息

  • 批准号:
    EP/H005536/1
  • 负责人:
  • 金额:
    $ 234.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The purpose of this research is to develop a promising new biomedical imaging technique called photoacoustic (PA) imaging. This involves firing very short (nanosecond) pulses of laser light into tissue. The light is absorbed by structures such as blood vessels producing a small heating effect. This leads to rapid thermoelastic expansion which generates high frequency (~tens of MHz) acoustic waves which travel though the tissue back to the surface. By measuring the time of arrival of these acoustic waves at a number of detectors positioned over the tissue surface, and with knowledge of the speed of sound, the acoustic signals can be backprojected to produce a 3D image of the internal absorbing structures within the tissue. The key advantage of the technique is that it combines the strong contrast of optical methods with the high spatial resolution available to ultrasound. This may make the technique a powerful diagnostic tool for identifying abnormalities such as certain types of cancer tumours that would be difficult to see using conventional medical imaging techniques such as X-ray or ultrasound imaging. This technique has many potential clinical applications, including detecting tumours in the breast, assessing skin abnormalities such as malignant melanomas or soft tissue damage such as burns or wounds. It can also be used to image small animals such as mice which are used extensively to model a wide range of human diseases. One of the most exciting features of photoacoustic imaging is its potential to characterise specific molecular processes, so called molecular imaging. This is achieved using probe molecules that strongly absorb certain wavelengths of light and have a high affinity for a specific cellular or molecular receptor that is characteristic of a particular disease such as cancer. In order to advance the technique to practical application, a substantial research program will be undertaken. A novel high resolution instrument, designed for non invasive imaging to depths of several mm, will be developed both for clinical use, for example to study skin pathologies and for the pre-clinical study of disease processes in small animal models. Endoscopic probes that are capable of being inserted into the body and guided deep within to image, for example, the inside of coronary arteries to assess the plaques that can build up and cause heart attacks will be developed. In addition, a dedicated instrument will be designed for the early detection and diagnosis of breast cancers and monitoring their treatment. Novel methods for recovering physiological information such as blood oxygenation and flow will also be explored and clinically tested. A programme of in vivo imaging both in humans and small animals to apply and validate these methods is planned, with specific emphasis on demonstrating the utility of the technique for the diagnosis and treatment of cancer, cardiovascular disease and neurological conditions. Overall this research offers the prospect of developing a powerful new diagnostic imaging tool that can be used to advance our understanding of disease mechanisms at an anatomical, physiological and molecular level and improving the clinical diagnosis and treatment of cancer and other major diseases.
本研究的目的是开发一种新的生物医学成像技术,称为光声成像。这包括向组织发射非常短(纳秒)的激光脉冲。光被血管等结构吸收,产生很小的加热效果。这会导致快速的热弹性膨胀,产生高频(~数十兆赫)声波,声波通过组织传回表面。通过测量这些声波到达位于组织表面上的多个检测器的时间,并且在知道声速的情况下,可以反向投影声信号以产生组织内的内部吸收结构的3D图像。这项技术的关键优势是它结合了光学方法的强对比度和超声波可用的高空间分辨率。这可能会使这项技术成为一种强大的诊断工具,用于识别某些类型的癌症肿瘤等异常情况,而使用传统的医学成像技术,如X射线或超声波成像,很难看到这些异常情况。这项技术有许多潜在的临床应用,包括检测乳房肿瘤,评估皮肤异常,如恶性黑色素瘤或软组织损伤,如烧伤或伤口。它还可以用来对小动物进行成像,例如小鼠,这些小动物被广泛用于模拟各种人类疾病。光声成像最令人兴奋的特征之一是它有可能表征特定的分子过程,即所谓的分子成像。这是通过使用探针分子来实现的,这些探针分子强烈地吸收某些波长的光,并对特定的细胞或分子受体具有高亲和力,这种受体是癌症等特定疾病的特征。为了将这项技术推向实际应用,将进行大量的研究计划。将开发一种新的高分辨率仪器,设计用于几毫米深度的非侵入性成像,既可用于临床,例如研究皮肤病理,也可用于小动物模型的疾病过程的临床前研究。将开发能够插入人体并被引导深入体内成像的内窥镜探头,例如冠状动脉内部,以评估可能形成并导致心脏病发作的斑块。此外,还将设计一种专用仪器,用于乳腺癌的早期发现和诊断,并监测其治疗情况。还将探索恢复血液氧合和血流等生理信息的新方法,并进行临床测试。计划在人类和小动物身上进行活体成像,以应用和验证这些方法,并特别强调展示该技术在诊断和治疗癌症、心血管疾病和神经疾病方面的效用。总体而言,这项研究提供了开发一种强大的新诊断成像工具的前景,该工具可用于在解剖学、生理学和分子水平上促进我们对疾病机制的理解,并改善癌症和其他重大疾病的临床诊断和治疗。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation
使用时域互相关进行流体中的声学分辨率光声多普勒速度测量
  • DOI:
    10.1117/12.2004742
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brunker J
  • 通讯作者:
    Brunker J
Quantitative Photoacoustic Image Reconstruction using Fluence Dependent Chromophores.
  • DOI:
    10.1364/boe.1.000201
  • 发表时间:
    2010-07-16
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Cox BT;Laufer JG;Beard PC
  • 通讯作者:
    Beard PC
Optimising the detection parameters for deep-tissue photoacoustic imaging
优化深层组织光声成像的检测参数
  • DOI:
    10.1117/12.908813
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen T
  • 通讯作者:
    Allen T
Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids.
  • DOI:
    10.1038/srep20902
  • 发表时间:
    2016-02-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Brunker J;Beard P
  • 通讯作者:
    Beard P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Beard其他文献

Super-resolution ultrasound
超分辨率超声
  • DOI:
    10.1038/527451a
  • 发表时间:
    2015-11-25
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Ben Cox;Paul Beard
  • 通讯作者:
    Paul Beard

Paul Beard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Beard', 18)}}的其他基金

Preclinical photoacoustic neuroimaging using a reverberant cavity
使用混响腔进行临床前光声神经成像
  • 批准号:
    BB/P027520/1
  • 财政年份:
    2017
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Research Grant
Endoscopic photoacoustic devices for minimally invasive biomedical sensing and imaging
用于微创生物医学传感和成像的内窥镜光声装置
  • 批准号:
    EP/L002019/1
  • 财政年份:
    2014
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Research Grant
Development and Application of Fibre-Laser Based Excitation Sources for Biomedical Photoacoustic Imaging
生物医学光声成像光纤激光激励源的开发与应用
  • 批准号:
    EP/J022144/1
  • 财政年份:
    2012
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Research Grant
Development of a prototype ultrasound imaging instrument for industrial and medical applications
开发用于工业和医疗应用的原型超声成像仪器
  • 批准号:
    EP/H502300/1
  • 财政年份:
    2010
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Research Grant
THE UCL BIOMEDICAL OPTICS RESEARCH LABORATORY: CROSS DISCIPLINARY FEASIBILITY ACCOUNT
伦敦大学学院生物医学光学研究实验室:跨学科可行性研究
  • 批准号:
    EP/H024859/1
  • 财政年份:
    2009
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Research Grant
MULTISPECTRAL QUANTITATIVE IMAGE RECONSTRUCTION METHODS FOR PHOTOACOUSTIC MOLECULAR IMAGING
光声分子成像多光谱定量图像重建方法
  • 批准号:
    EP/D069181/1
  • 财政年份:
    2006
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Research Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Fellowship
Sustainable solution for cooling application
冷却应用的可持续解决方案
  • 批准号:
    10089491
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Collaborative R&D
Wearable Electronic Skins for Biomedical Application
用于生物医学应用的可穿戴电子皮肤
  • 批准号:
    2906949
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Studentship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Standard Grant
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
  • 批准号:
    2227366
  • 财政年份:
    2024
  • 资助金额:
    $ 234.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了