Endoscopic photoacoustic devices for minimally invasive biomedical sensing and imaging

用于微创生物医学传感和成像的内窥镜光声装置

基本信息

  • 批准号:
    EP/L002019/1
  • 负责人:
  • 金额:
    $ 80.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim of this project is to develop a range of miniature endoscopic photoacoustic probes for minimally invasive clinical applications such as the detection of cancers in organs such as the oesophagus or colon, the intravascular assessment of coronary artery disease or guiding interventional procedures such as epidural injections or key-hole surgery. Photoacoustic imaging is a new technique for visualizing biological tissues based on the use of ultrasound waves generated by the absorption of short laser pulses. The tremendous advances in photoacoustic techniques over the last 5 years have excited significant interest, largely due to the exquisite in vivo images of tissues that have recently been obtained by several research groups. To date, most efforts have been focused on developing non invasive imaging instruments for applications such as breast and skin cancer imaging. By contrast, less attention has been devoted to minimally invasive applications where a miniature fibre optic probe is inserted into the body in order to access the organ or tissue of interest. This is in part due to the technical challenges associated with fabricating miniature photoacoustic probes using piezoelectric detectors which are conventionally used to detect photoacoustic signals. We propose to address this by developing a range of miniature endoscopic devices that use a novel optical ultrasound sensor based upon a Fabry Perot polymer film etalon. This approach offers significant advantages in terms of size, cost and performance. Because the sensor is formed using thin film vacuum deposition techniques and is optically transparent, it can be directly deposited on to the tip of a very fine optical fibre which is used to deliver the excitation laser energy to the target tissue. This offers the prospect of fabricating much smaller probes than possible using conventional piezoelectric detectors, potentially as small as a single human hair. It also permits batch fabrication at relatively low unit cost - an important requirement as many minimally invasive applications require disposable devices. In addition the sensor can readily be deposited on to a variety of fibre tip geometries (single fibres, angle polished or shaped fibre tips, fibre bundles etc) allowing a diversity of sensing and imaging devices (forward-viewing, side-viewing, single or multi-element) to be realised. Perhaps most importantly, we have shown that this type of sensor provides very high wideband sensitivity enabling photoacoustic images of unprecedented quality to be obtained.These advantages will be exploited to develop a range of novel endoscopic devices: a single element forward-viewing probe, a side-viewing probe and multielement imaging probes. In vivo animal studies will be undertaken to demonstrate the application of the technology to the assessment of oesophageal cancer and coronary artery disease and guiding needles used to deliver anaesthesia. As well as being clinically important themselves, these applications will serve to illustrate the broader potential of the technology in many other branches of interventional medicine. For example, these probes could potentially also be used for imaging the lower gastrointestinal tract, solid organs such as the prostate and liver and guiding needle biopsies, catheter ablation treatments, laparoscopic surgery and other interventional procedures. To undertake the project a multidisciplinary research team has been assembled. This comprises medical physicists and bioengineers with significant expertise in photoacoustic imaging, acoustic modeling and medical device engineering and clinicians with experience of translating new devices and optical techniques to clinical practice. If successful, this research could open up many new applications of photoacoustic techniques that could lead to improved diagnosis and treatment of cancer and other diseases and reduce the risk of complications during interventional procedures.
该项目的目的是开发一系列微型内窥镜光声探头,用于微创临床应用,例如检测食道或结肠等器官中的癌症、冠状动脉疾病的血管内评估或指导硬膜外注射或锁孔手术等介入手术。光声成像是一种基于吸收短激光脉冲产生的超声波来可视化生物组织的新技术。过去 5 年光声技术的巨大进步引起了人们的极大兴趣,这主要归功于几个研究小组最近获得的精美的组织活体图像。迄今为止,大多数努力都集中在开发用于乳腺癌和皮肤癌成像等应用的非侵入性成像仪器。相比之下,人们对微创应用的关注较少,在微创应用中,将微型光纤探针插入体内以接近感兴趣的器官或组织。这部分是由于与使用通常用于检测光声信号的压电检测器制造微型光声探针相关的技术挑战。我们建议通过开发一系列微型内窥镜设备来解决这个问题,这些设备使用基于法布里珀罗聚合物薄膜标准具的新型光学超声传感器。这种方法在尺寸、成本和性能方面具有显着的优势。由于该传感器是采用薄膜真空沉积技术形成的并且是光学透明的,因此它可以直接沉积在非常细的光纤的尖端上,该光纤用于将激发激光能量传递到目标组织。这提供了制造比使用传统压电探测器更小的探针的前景,可能小到一根人类头发。它还允许以相对较低的单位成本进行批量制造——这是一个重要的要求,因为许多微创应用需要一次性设备。此外,传感器可以很容易地沉积在各种光纤尖端几何形状(单光纤、角度抛光或成形光纤尖端、光纤束等)上,从而实现各种传感和成像设备(前视、侧视、单元件或多元件)。也许最重要的是,我们已经证明这种类型的传感器提供非常高的宽带灵敏度,能够获得前所未有的质量的光声图像。将利用这些优势来开发一系列新型内窥镜设备:单元件前视探头、侧视探头和多元件成像探头。将进行体内动物研究,以证明该技术在评估食道癌和冠状动脉疾病以及用于麻醉的引导针中的应用。这些应用不仅本身具有临床重要性,还将展示该技术在介入医学许多其他分支中的更广泛潜力。例如,这些探针还可以用于对下胃肠道、前列腺和肝脏等实体器官进行成像,并引导针活检、导管消融治疗、腹腔镜手术和其他介入手术。为了承担该项目,已经组建了一个多学科研究团队。其中包括在光声成像、声学建模和医疗设备工程方面拥有丰富专业知识的医学物理学家和生物工程师,以及具有将新设备和光学技术转化为临床实践经验的临床医生。如果成功,这项研究可能会开辟光声技术的许多新应用,从而改善癌症和其他疾病的诊断和治疗,并降低介入手术期间并发症的风险。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures.
  • DOI:
    10.1117/1.jbo.20.8.086005
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Xia W;Nikitichev DI;Mari JM;West SJ;Pratt R;David AL;Ourselin S;Beard PC;Desjardins AE
  • 通讯作者:
    Desjardins AE
All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy.
  • DOI:
    10.1038/s41377-018-0070-5
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ansari R;Zhang EZ;Desjardins AE;Beard PC
  • 通讯作者:
    Beard PC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Beard其他文献

Super-resolution ultrasound
超分辨率超声
  • DOI:
    10.1038/527451a
  • 发表时间:
    2015-11-25
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Ben Cox;Paul Beard
  • 通讯作者:
    Paul Beard

Paul Beard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Beard', 18)}}的其他基金

Preclinical photoacoustic neuroimaging using a reverberant cavity
使用混响腔进行临床前光声神经成像
  • 批准号:
    BB/P027520/1
  • 财政年份:
    2017
  • 资助金额:
    $ 80.09万
  • 项目类别:
    Research Grant
Development and Application of Fibre-Laser Based Excitation Sources for Biomedical Photoacoustic Imaging
生物医学光声成像光纤激光激励源的开发与应用
  • 批准号:
    EP/J022144/1
  • 财政年份:
    2012
  • 资助金额:
    $ 80.09万
  • 项目类别:
    Research Grant
Development of a prototype ultrasound imaging instrument for industrial and medical applications
开发用于工业和医疗应用的原型超声成像仪器
  • 批准号:
    EP/H502300/1
  • 财政年份:
    2010
  • 资助金额:
    $ 80.09万
  • 项目类别:
    Research Grant
THE UCL BIOMEDICAL OPTICS RESEARCH LABORATORY: CROSS DISCIPLINARY FEASIBILITY ACCOUNT
伦敦大学学院生物医学光学研究实验室:跨学科可行性研究
  • 批准号:
    EP/H024859/1
  • 财政年份:
    2009
  • 资助金额:
    $ 80.09万
  • 项目类别:
    Research Grant
DEVELOPMENT AND APPLICATION OF PHOTOACOUSTIC IMAGING FOR THE CLINICAL AND LIFE SCIENCES
光声成像在临床和生命科学中的发展和应用
  • 批准号:
    EP/H005536/1
  • 财政年份:
    2009
  • 资助金额:
    $ 80.09万
  • 项目类别:
    Fellowship
MULTISPECTRAL QUANTITATIVE IMAGE RECONSTRUCTION METHODS FOR PHOTOACOUSTIC MOLECULAR IMAGING
光声分子成像多光谱定量图像重建方法
  • 批准号:
    EP/D069181/1
  • 财政年份:
    2006
  • 资助金额:
    $ 80.09万
  • 项目类别:
    Research Grant

相似海外基金

5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
  • 批准号:
    10677283
  • 财政年份:
    2023
  • 资助金额:
    $ 80.09万
  • 项目类别:
Affordable Shortwave Infrared Spectroscopy for Stroke Risk Screening in Children with Sickle Cell Disease
经济实惠的短波红外光谱仪用于镰状细胞病儿童中风风险筛查
  • 批准号:
    10730967
  • 财政年份:
    2023
  • 资助金额:
    $ 80.09万
  • 项目类别:
Clinical Translation of dual-modality transrectal ultrasound and photoacoustic imaging for detection of aggressive human prostate cancer
双模态经直肠超声和光声成像检测侵袭性人类前列腺癌的临床转化
  • 批准号:
    10802712
  • 财政年份:
    2023
  • 资助金额:
    $ 80.09万
  • 项目类别:
Continuous Photoacoustic Monitoring of Neonatal Stroke in Intensive Care Unit
重症监护病房新生儿中风的连续光声监测
  • 批准号:
    10548689
  • 财政年份:
    2022
  • 资助金额:
    $ 80.09万
  • 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
  • 批准号:
    10625065
  • 财政年份:
    2022
  • 资助金额:
    $ 80.09万
  • 项目类别:
A Miniaturized and High-frequency Acoustic Imaging System for Oral Health and Diseases of the Head and Neck
用于口腔健康和头颈疾病的小型化高频声学成像系统
  • 批准号:
    10346895
  • 财政年份:
    2022
  • 资助金额:
    $ 80.09万
  • 项目类别:
A Normal Paradigm to Monitor Perinatal Asphyxia Using A Combined Ultrasound-Neuromodulation and Photoacoustic-Imaging Device
使用超声神经调节和光声成像相结合的设备监测围产期窒息的正常范例
  • 批准号:
    10552231
  • 财政年份:
    2022
  • 资助金额:
    $ 80.09万
  • 项目类别:
Multiparametric transrectal ultrasound and photoacoustic imaging of human prostate
人前列腺多参数经直肠超声和光声成像
  • 批准号:
    10651397
  • 财政年份:
    2022
  • 资助金额:
    $ 80.09万
  • 项目类别:
Transvenous Optoacoustic-Ultrasound Guided Cold Laser Wire for Crossing Coronary Chronic Total Occlusion
经静脉光声超声引导冷激光线穿越冠状动脉慢性完全闭塞
  • 批准号:
    10612422
  • 财政年份:
    2022
  • 资助金额:
    $ 80.09万
  • 项目类别:
Transvenous Optoacoustic-Ultrasound Guided Cold Laser Wire for Crossing Coronary Chronic Total Occlusion
经静脉光声超声引导冷激光线穿越冠状动脉慢性完全闭塞
  • 批准号:
    10435198
  • 财政年份:
    2022
  • 资助金额:
    $ 80.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了