Target detetction in Clutter for sonar imagery
声纳图像杂波中的目标检测
基本信息
- 批准号:EP/H012354/1
- 负责人:
- 金额:$ 15.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims at studying new techniques for detection and classification of targets underwater using 3D and texture analysis. On simple seabed types such as flat sand, it is very easy to detect and classify targets. It becomes much more difficult when the seabed is either highly cluttered with rocky or coral structures, marine life such as seaweed or is of a complex nature (large rocky outcrops and sand dunes). In those areas, classical target detection and classification techniques fails as they tend to concentrate on the shape of the target, classically recovered using shadow analysis (the acoustic shadow is casted by the target on the seabed). On the other hand, the analysis of the target echo is difficult for classical high resolution sonars as they are susceptible to speckle noise and in general not resolved enough for classification. Detection and classification in such challenging scenarios can be improved by detectiing the targets as an outlier in the current texture field. This can be done using 2D or 3D texture measures but as most strong textures are due to the 3D nature of the seabed, we believe that 3D texture analysis will be more effective and therefore propose to focus on these. Classification can be addressed with the development of new higher resolution sonars (SAS) and new 3D sonars (Interferometric SAS / Side Scan). As resolution increases, the structure of the echo will become more apparent and techniques developed in the machine vision and pattern recognition communities can be used. This is the secondary objective of this proposal.
该建议旨在研究利用三维和纹理分析进行水下目标检测和分类的新技术。在简单的海底类型,如平坦的沙滩上,很容易探测和分类目标。当海底布满岩石或珊瑚结构、海藻等海洋生物或具有复杂性质(大型岩石露头和沙丘)时,这就变得更加困难。在这些地区,经典的目标检测和分类技术会失败,因为它们往往集中在目标的形状上,经典地使用阴影分析(声影是由海底目标投射的)来恢复。另一方面,目标回波的分析对于经典的高分辨率声纳来说是困难的,因为它们容易受到斑点噪声的影响,并且通常不足以进行分类。通过将目标检测为当前纹理场中的离群值,可以改进在这种具有挑战性的场景中的检测和分类。这可以使用2D或3D纹理测量来完成,但由于大多数强纹理是由于海底的3D性质,我们认为3D纹理分析将更有效,因此建议重点关注这些。分类可以通过开发新的更高分辨率声纳(SAS)和新的三维声纳(干涉SAS /侧扫描)来解决。随着分辨率的提高,回声的结构将变得更加明显,并且可以使用机器视觉和模式识别社区中开发的技术。这是本提案的第二个目标。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Target detection using statistical MIMO
使用统计 MIMO 进行目标检测
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Pailhas, Y
- 通讯作者:Pailhas, Y
High-Resolution Sonars: What Resolution Do We Need for Target Recognition?
- DOI:10.1155/2010/205095
- 发表时间:2010-02
- 期刊:
- 影响因子:1.9
- 作者:Y. Pailhas;Y. Pétillot;C. Capus
- 通讯作者:Y. Pailhas;Y. Pétillot;C. Capus
Design of artificial landmarks for underwater simultaneous localisation and mapping
水下同步定位与建图人工地标设计
- DOI:10.1049/iet-rsn.2011.0103
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Pailhas Y
- 通讯作者:Pailhas Y
Proceedings of the 2012 International Conference on Detection and Classification of Underwater Targets
2012年水下目标探测与分类国际会议论文集
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Quidu Isabelle
- 通讯作者:Quidu Isabelle
Cascade of boosted classifiers for automatic target recognition in synthetic aperture sonar imagery
用于合成孔径声纳图像中自动目标识别的增强分类器级联
- DOI:10.1121/1.4788639
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Sawas J
- 通讯作者:Sawas J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yvan Petillot其他文献
AUTOTRACKER: Real-Time Pipeline and Cable Tracking Technologies for AUVs
- DOI:
10.1016/s1474-6670(17)36688-0 - 发表时间:
2003-04-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Evans;Yvan Petillot;Paul Redmond;Scott Reed;David Lane - 通讯作者:
David Lane
Comparison of Machine Learning Approaches for Robust and Timely Detection of PPE in Construction Sites
用于稳健且及时检测建筑工地个人防护装备的机器学习方法比较
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Roxana Azizi;Maria Koskinopoulou;Yvan Petillot - 通讯作者:
Yvan Petillot
Digital Twins Below the Surface: Enhancing Underwater Teleoperation
水下数字孪生:增强水下远程操作
- DOI:
10.48550/arxiv.2402.07556 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
F. O. Adetunji;Niamh Ellis;Maria Koskinopoulou;Ignacio Carlucho;Yvan Petillot - 通讯作者:
Yvan Petillot
Yvan Petillot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yvan Petillot', 18)}}的其他基金
UNderwater IntervenTion for offshore renewable Energies (UNITE)
近海可再生能源水下干预 (UNITE)
- 批准号:
EP/X024806/1 - 财政年份:2023
- 资助金额:
$ 15.42万 - 项目类别:
Research Grant
Exploiting Diversity Gain Through MIMO Radar and Sonar Signal Processing
通过 MIMO 雷达和声纳信号处理利用分集增益
- 批准号:
EP/F068956/1 - 财政年份:2009
- 资助金额:
$ 15.42万 - 项目类别:
Research Grant














{{item.name}}会员




