UNderwater IntervenTion for offshore renewable Energies (UNITE)

近海可再生能源水下干预 (UNITE)

基本信息

  • 批准号:
    EP/X024806/1
  • 负责人:
  • 金额:
    $ 148.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This prosperity partnership project, UNITE, brings Fugro Ltd, a major Tier 1 offshore service provider, together with a world-leading robotics research team from Heriot-Watt University and Imperial College London to address key open research challenges for safe and robust robotic solutions in the offshore renewable sector. It specifically focuses on the development and deployment of perception-enabled, risk-aware underwater intervention techniques, which are critical for the widespread adoption of robotics solutions in this rapidly expanding sector. The vision of the UNITE project is to develop a holistic solution to autonomous and semi-autonomous underwater intervention applied to the maintenance and repair of offshore wind farms, remotely monitored from shore and safely operated worldwide. UNITE's research vision and programme aim at reducing the use of crewed support vessels for operation, keeping offshore turbines more productive with less downtime and more timely and cost-effective maintenance and repair. This will also support the industry to cut costs and carbon footprint while dramatically improving health&safety.In a world where climate change is increasingly impacting our lives, we need to accelerate the energy transition towards net-zero. The UK has a huge potential for Offshore Wind Energy and the UK government has made this a priority, planning to reach 1TW by 2050. To reach such ambitious targets, you have to imagine 10's of thousands of offshore wind turbines, deployed in some of the harshest environments on earth and able to reliably produce energy for decades. At present, the cost of operation and maintenance of such wind farms is 30% of the overall cost and is performed using manned vessels deployed in extreme environments, hence reducing the operational window they can be deployed, increasing the carbon footprint of operations and risk to the personnel deployed offshore. This will simply not scale when more and more wind farms are built and the availability, environmental impact and cost of the current solutions will no longer make sense. What is required is to replace these large assets by smaller, more environmentally friendly and cost effective robotic solutions, controlled safely from shore by a new generation of pilots, engineers and operators. This is already a reality, at least in advanced demonstrator form, when we are only interested in inspection. Remote drones, surface vessels and underwater systems can be sent to inspect subsea cables, turbines and other subsea assets. In some cases, they can be permanently deployed for long periods of time. However, when more complex tasks requiring intervention (contact and manipulation) are required, the current technology is not ready, especially in cases where the communication link between the robot and shore is intermittent, slow or unreliable. If not solved, this will dramatically impact the adoption of robotics (as existing solutions will still need to be deployed), and potentially stop it in its track, in turn reducing the progress of offshore renewable energy as a viable clean energy source. New research is needed to endow the remote robotic platforms with the intervention capabilities they require, as well as ensuring that the platforms are safe even when not in direct control of a human. For this to happen, robots (and their sensors) must be able to build an accurate map of the world around them and use this map to navigate around obstacles and towards targets of interest. They need to be able to interact with the structures safely (controlling force of interaction) and grasp objects whilst being subject to potentially significant external disturbances (currents, waves, etc) and coordinate their respective actions (e.g surface vehicle deploying an underwater system). They also need to understand when they might fail and alert an operator on shore to ask for support. This is what the UNITE proposal will tackle.
这个名为UNITE的繁荣合作项目将主要的一级海上服务提供商辉固有限公司与来自赫瑞瓦特大学和伦敦帝国理工学院的世界领先的机器人研究团队联合起来,共同解决海上可再生能源领域安全和强大的机器人解决方案的关键开放研究挑战。它特别侧重于开发和部署具有感知能力和风险意识的水下干预技术,这对于在这个快速发展的领域广泛采用机器人解决方案至关重要。UNITE项目的愿景是开发一种用于海上风电场维护和维修的自主和半自主水下干预的整体解决方案,从岸上远程监控并在全球范围内安全运行。UNITE的研究愿景和计划旨在减少船员支持船的使用,使海上涡轮机更高效,停机时间更短,维护和维修更及时,更具成本效益。这也将支持该行业削减成本和碳足迹,同时显著改善健康和安全。在气候变化日益影响我们生活的当今世界,我们需要加速向净零排放的能源转型。英国拥有巨大的海上风能潜力,英国政府已将其列为优先事项,计划到2050年达到1TW。为了实现这样雄心勃勃的目标,你必须想象成千上万的海上风力涡轮机,部署在地球上一些最恶劣的环境中,并且能够可靠地生产几十年的能源。目前,此类风电场的运营和维护成本占总成本的30%,并且使用部署在极端环境中的有人船来执行,因此减少了可以部署的操作窗口,增加了操作的碳足迹和部署在海上的人员的风险。当越来越多的风力发电场建成,现有解决方案的可用性、环境影响和成本将不再合理时,这将无法扩大规模。我们需要的是用更小、更环保、更具成本效益的机器人解决方案取代这些大型设备,由新一代飞行员、工程师和操作人员在岸上安全控制。当我们只对检查感兴趣时,这已经成为现实,至少在先进的演示形式中是这样。远程无人机、水面舰艇和水下系统可以被派去检查海底电缆、涡轮机和其他海底资产。在某些情况下,它们可以长期永久部署。然而,当需要更复杂的干预任务(接触和操作)时,目前的技术还没有准备好,特别是在机器人与岸上之间的通信链路断断续续、缓慢或不可靠的情况下。如果不解决,这将极大地影响机器人技术的采用(因为现有的解决方案仍需要部署),并有可能阻止它的发展,进而减少海上可再生能源作为一种可行的清洁能源的进展。需要新的研究来赋予远程机器人平台所需的干预能力,以及确保平台即使在没有人类直接控制的情况下也是安全的。为了实现这一点,机器人(及其传感器)必须能够构建周围世界的精确地图,并使用该地图绕过障碍并朝着感兴趣的目标前进。他们需要能够安全地与结构相互作用(控制相互作用的力),并在受到潜在的重大外部干扰(电流,波浪等)的情况下抓住物体,并协调各自的行动(例如水面车辆部署水下系统)。他们还需要了解何时可能发生故障,并提醒岸上的操作人员寻求支持。这就是联合工会的提议要解决的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yvan Petillot其他文献

AUTOTRACKER: Real-Time Pipeline and Cable Tracking Technologies for AUVs
  • DOI:
    10.1016/s1474-6670(17)36688-0
  • 发表时间:
    2003-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan Evans;Yvan Petillot;Paul Redmond;Scott Reed;David Lane
  • 通讯作者:
    David Lane
Comparison of Machine Learning Approaches for Robust and Timely Detection of PPE in Construction Sites
用于稳健且及时检测建筑工地个人防护装备的机器学习方法比较
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Roxana Azizi;Maria Koskinopoulou;Yvan Petillot
  • 通讯作者:
    Yvan Petillot
Digital Twins Below the Surface: Enhancing Underwater Teleoperation
水下数字孪生:增强水下远程操作
  • DOI:
    10.48550/arxiv.2402.07556
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. O. Adetunji;Niamh Ellis;Maria Koskinopoulou;Ignacio Carlucho;Yvan Petillot
  • 通讯作者:
    Yvan Petillot

Yvan Petillot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yvan Petillot', 18)}}的其他基金

Exploiting Diversity Gain Through MIMO Radar and Sonar Signal Processing
通过 MIMO 雷达和声纳信号处理利用分集增益
  • 批准号:
    EP/F068956/1
  • 财政年份:
    2009
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Research Grant
Target detetction in Clutter for sonar imagery
声纳图像杂波中的目标检测
  • 批准号:
    EP/H012354/1
  • 财政年份:
    2009
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
  • 批准号:
    10102690
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    EU-Funded
Tackling Youth Loneliness in Urban Areas: Measuring feasibility, acceptability and benefits of a social interaction intervention
解决城市地区青少年的孤独感:衡量社交互动干预的可行性、可接受性和益处
  • 批准号:
    ES/Z502522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Research Grant
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
  • 批准号:
    10101171
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Collaborative R&D
In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
  • 批准号:
    10108568
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    EU-Funded
Informing intervention responses to violent offenders through data linkage
通过数据链接告知对暴力犯罪者的干预反应
  • 批准号:
    DP240101812
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Discovery Projects
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
English Name Intervention to Improve Intercultural Competency Among University Students in Japan
提高日本大学生跨文化能力的英文姓名干预
  • 批准号:
    24K16819
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An investigation of the role of teacher intervention in effective digital game-based vocabulary learning
教师干预在有效的基于数字游戏的词汇学习中的作用的调查
  • 批准号:
    24K04078
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creating Better Opportunities in the South West Through a Growth-Mindset-of-Opportunity Intervention
通过机会增长心态干预在西南地区创造更好的机会
  • 批准号:
    ES/Z502480/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Research Grant
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
  • 批准号:
    MR/Z503599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.26万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了