Design of Wave and Current Generators for Stable Wave Generation in Multidirectional Combined Wave Current tanks

多向组合波流池中稳定波浪产生的波流发生器设计

基本信息

  • 批准号:
    EP/H012745/1
  • 负责人:
  • 金额:
    $ 126.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The generation of waves in laboratory tanks has become a vital aspect of model testing in support of the design of offshore systems including, and of direct relevance to this proposal, marine energy devices. Most serious wave-making equipment world-wide is based upon force feedback control energy absorption wavemakers. The principles of these were pioneered at the University of Edinburgh, under the leadership of Stephen Salter, in the 1970s and subsequently used in the construction of the multidirectional and multifrequency capable Edinburgh Wide Wave Tank in 1977 and its successor, the Curved Wave Tank. It is now appreciated that the design of wave energy systems requires an understanding of the influence of currents and that the operation of tidal current systems must take account of the influence of wave action. Natural wave fields are multidirectional and facilities for their scale replication have existed since the late 1970s. Existing combined wave/current facilities, however, have only very limited directional current capabilities, generally at the expense of wave field reproduction. For rigorous testing, it is necessary to simultaneously control multidirectional wave fields and variable direction currents, including control of their depth profiles. In addition, most existing wave/current systems, in which flow can be generated parallel to the principal wave generation axis, rely on upwelling to achieve their current formation. It is not believed that this approach can accurately replicate shallow water speed profiles, appropriate for wave and tidal current energy applications, especially since the nature of the forces between upwelled water currents and wavemakers can result in unreliable performance, due to interference with the force feedback used in most modern wave generation systems. Accurate reproduction of stochastic multidirectional seas and independently specifiable current characteristics will require a new generation of combined wave/current generation systems. These should have the capability of accurately reproducing seas with pre-defined spectral forms in the presence of currents. The team will establish robust principles to guide the design of combined wave and current generators, which can be incorporated into laboratory facilities capable of generating predefined multidirectional wave fields coincident with accurately reproduced current patterns. This will be achieved by developing, through a rigorous research programme, the scientific and engineering principles necessary for the development of next generation wave/current generators. These must be capable of inclusion within arrays to allow the generation of seas with predefined three dimensional spectra. The programme will involve the development of numerical models of multidirectional wavemakers, into which current can be included. It is anticipated that the numerical analysis will be based on the cut-cell approach, which lends itself well to problems with variable geometries and a dynamic free surface. These models will be evaluated in a programme of experimental tests in an existing two dimensional flume, in which the current generation capability will be extended, and subsequently in the Edinburgh curved wave tank. The comparison procedure will involve a significant test programme involving state of the art PIV based flow measurement techniques. The models, once established and evaluated will be used to guide the development, design and construction of an optimised wave-current generator and associated control systems. This will be subsequently evaluated experimentally in the test flume and curved tank.The team will, in addition, present protocols to guide other researchers in the identification of the most appropriate methods for their own wave/current simulation applications and in the subsequent design and construction of their wave/current laboratory systems.
在实验室水箱中产生波浪已成为模型试验的一个重要方面,以支持包括海洋能源装置在内的近海系统的设计,并与本提议直接相关。世界上最重要的造波设备是基于力反馈控制的能量吸收造波机。这些原理是爱丁堡大学在斯蒂芬·索尔特的领导下于20世纪70年代率先提出的,随后在1977年建造了具有多方向和多频率能力的爱丁堡宽波水箱及其继任者曲线波水箱。现在人们认识到,波浪能系统的设计需要了解水流的影响,潮流系统的运行必须考虑波浪作用的影响。自然波场是多方向的,自1970年代末以来就存在用于规模复制的设施。然而,现有的波浪/水流组合设施的定向水流能力非常有限,通常是以波浪场再现为代价的。为了进行严格的测试,有必要同时控制多方向波场和可变方向的水流,包括控制它们的深度剖面。此外,大多数现有的波浪/水流系统,其中的水流可以平行于主波产生轴产生,依靠上升流来实现它们的电流形成。人们认为,这种方法不能准确地复制适合波浪和潮流能量应用的浅水速度剖面,特别是由于上升流和造波机之间的力的性质可能导致性能不可靠,这是由于干扰了大多数现代波浪发电系统中使用的力反馈。准确再现随机的多方向海洋和可独立指定的海流特征将需要新一代波/流联合发电系统。它们应该有能力在有海流存在的情况下以预先定义的频谱形式准确地再现海洋。该团队将建立可靠的原则来指导组合波流发生器的设计,这些波流发生器可以整合到实验室设施中,能够产生与准确复制的电流模式一致的预定义多方向波场。这将通过一个严格的研究方案,制定开发下一代波浪/电流发生器所需的科学和工程原理来实现。它们必须能够包含在阵列中,以允许生成具有预先定义的三维光谱的SEA。该计划将涉及开发多方向造波机的数值模型,其中可以包括电流。预计数值分析将基于割胞方法,该方法很好地适用于具有可变几何和动态自由面的问题。这些模型将在现有的二维水槽中进行实验测试,其中当前的发电能力将得到扩展,随后将在爱丁堡弯曲波浪水槽中进行评估。比较程序将涉及涉及最先进的基于PIV的流量测量技术的重要测试程序。这些模型一旦建立和评估,将被用于指导优化的波流发电机和相关控制系统的开发、设计和建造。这将随后在测试水槽和弯曲水槽中进行实验评估。此外,该团队还将提出协议,以指导其他研究人员确定最适合他们自己的波浪/水流模拟应用的方法,并在随后设计和建造他们的波浪/水流实验室系统。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The design and commissioning of the first, circular, combined current and wave test basin
第一个圆形流浪组合试验池的设计和调试
  • DOI:
    10.1109/oceans-taipei.2014.6964577
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ingram D
  • 通讯作者:
    Ingram D
The generation of 3D flows in a combined current and wave tank
在水流和波浪组合池中生成 3D 流动
  • DOI:
    10.1016/j.oceaneng.2014.10.008
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Robinson A
  • 通讯作者:
    Robinson A
Generating controllable velocity fluctuations using twin oscillating hydrofoils: experimental validation
使用双振荡水翼产生可控速度波动:实验验证
  • DOI:
    10.1017/jfm.2014.257
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Harding S
  • 通讯作者:
    Harding S
Numerical analysis of force-feedback control in a circular tank
圆形水箱力反馈控制的数值分析
  • DOI:
    10.1016/j.apor.2014.07.002
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Gyongy I
  • 通讯作者:
    Gyongy I
The effect of inlet design on the flow within a combined waves and current flumes, test tank and basins
入口设计对波流组合水槽、测试池和水池内流量的影响
  • DOI:
    10.1016/j.coastaleng.2014.10.004
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Robinson A
  • 通讯作者:
    Robinson A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Bryden其他文献

Overcoming the marine energy pre-profit phase: What classifies the game-changing “array-scale success”?
  • DOI:
    10.1016/j.ijome.2015.05.002
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ralf Bucher;Ian Bryden
  • 通讯作者:
    Ian Bryden

Ian Bryden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Bryden', 18)}}的其他基金

Optimising Array Form for Energy Extraction and Environmental Benefit (EBAO)
优化阵列形式以实现能量提取和环境效益 (EBAO)
  • 批准号:
    NE/J004227/1
  • 财政年份:
    2011
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Research Grant
United Kingdom Centre for Marine Energy Research: The all UK waters, combined, current and wave test facility.
英国海洋能源研究中心:英国全境水域的海流和波浪综合测试设施。
  • 批准号:
    EP/I02932X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Research Grant

相似国自然基金

WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
  • 批准号:
    32270940
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
  • 批准号:
    2021JJ31110
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
  • 批准号:
    31970841
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
  • 批准号:
    11701382
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
  • 批准号:
    31772281
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
  • 批准号:
    81673058
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Studies of current profile formation in a lower-hybrid wave driven tokamak plasma
低混合波驱动托卡马克等离子体中电流分布形成的研究
  • 批准号:
    22K03573
  • 财政年份:
    2022
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Excellence in Research: The role of wave-current-ice interaction to a freshwater plume dynamics
卓越的研究:波-流-冰相互作用对淡水羽流动力学的作用
  • 批准号:
    2154154
  • 财政年份:
    2022
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Standard Grant
Polarization control of spin wave spin current and its device application
自旋波自旋电流的偏振控制及其器件应用
  • 批准号:
    22H01936
  • 财政年份:
    2022
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research and development of eddy current testing method using terahertz wave emission from spin current
自旋流太赫兹波发射涡流检测方法的研究与开发
  • 批准号:
    21H01387
  • 财政年份:
    2021
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modulation of Bubble-Mediated Gas Transfer due to Wave-Current Interactions
波流相互作用对气泡介导的气体传输的调节
  • 批准号:
    2121646
  • 财政年份:
    2021
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Standard Grant
Understanding the Dynamics of Wave- and Current-supported Turbidity Currents via High-performance High-fidelity Numerical Simulations
通过高性能高保真数值模拟了解波浪和水流支持的浊流动力学
  • 批准号:
    2023676
  • 财政年份:
    2020
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Standard Grant
Mathematical Modeling of the Current COVID-19 Epidemic and Potential Second Wave in Alberta to Improve Public Health Responses
对艾伯塔省当前的 COVID-19 疫情和潜在的第二波疫情进行数学建模,以改善公共卫生应对措施
  • 批准号:
    555037-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Alliance Grants
Wave Current Interaction with stochastic advection by Lie transport (WCI-SALT)
波流与李输运随机平流的相互作用 (WCI-SALT)
  • 批准号:
    2280030
  • 财政年份:
    2019
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Studentship
Wave-current interaction in the ocean surface layer; New perspective in its dynamics and global evaluation of resultant mixing
海洋表层的波流相互作用;
  • 批准号:
    19H01968
  • 财政年份:
    2019
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modulation of Bubble-Mediated Gas Transfer due to Wave-Current Interactions
波流相互作用对气泡介导的气体传输的调节
  • 批准号:
    1924686
  • 财政年份:
    2019
  • 资助金额:
    $ 126.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了