EPSRC Network on Vision and Language (V&L Net)

EPSRC 视觉和语言网络 (V

基本信息

  • 批准号:
    EP/H018557/1
  • 负责人:
  • 金额:
    $ 13.28万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The amount of digital information accessible on the web and, more generally, in data repositories of various sorts isgrowing at an ever faster pace. Increasingly, digital information means visual content (image and video), and thisdevelopment has resulted in a situation where computational solutions are lagging behind a diverse range ofcurrent image/video search, processing and management needs. There is a big, and as yet unbridged, semanticgap between visual content and language. Finding solutions for image/video retrieval, automatic image/videoannotation and similar challenges will require this gap to be bridged, and this in turn will require expertise from boththe computer vision (CV) and natural language processing (NLP) fields. Yet, while language and vision are the twoprimary modalities for human perception and computer-mediated communication, the two corresponding computingscience disciplines hardly talk to each other, and this is part of the reason why the language-vision gap is still sowide: NLP research is perhaps not aware enough of the range of possible applications involving visual content andtheir specific language processing requirements; CV can tend to underestimate the complexity of thelanguage processing problem, and currently uses mostly basic language processing technology, whereassophisticated, high-performance tools exist.We propose an EPSRC Network on Vision and Language, V&L Net, to create a forum for researchers from CVand NLP to meet and exchange ideas, expertise and technology. The UK has some of the world's leadingresearchers in NLP and CV. V&L Net aims to tap this body of expertise to create new strategic partnerships aimed atnarrowing the language-vision gap by developing the theory required for solutions to the difficult challenges posedby our increasingly multi-modal world. A successful network will place the UK at the forefront of developing solutionsat the language-vision intersection which have clear commercial potential.Our overarching goal in V&L Net is the creation of a new interdisciplinary research community working towardscomputational solutions for challenges that involve both language and vision. By (i) bringing researchers from thetwo currently separate disciplines of computer vision and language processing together, (ii) facilitating access torelevant information, expertise, and resources, and (iii) stimulating research and pump-priming individual researchprojects, we aim to engender a substantial increase in interdisciplinary research activity. Through this increase inwork bringing to bear expertise from both computer vision and language processing, we expect to see a stepchange in progress towards solutions for a range of real-world challenges as well as theoretical questions. Whilethe latter will tend to have a more long-term impact (laying the groundwork for future breakthroughs), the formerhave substantial potential to result in ground-breaking new products and services that will improve people's qualityof life in diverse ways even in the short to medium term. People with impairments in sight, hearing and cognitive ability will benefit from assistive technology that will help them access multiple modalities. Improvements in image search and retrieval will enhance online search experience, as well as help institutions such as hospitals and police forces to cope with the massive amounts of images and videos they deal with daily.
网络上可访问的数字信息量,以及更广泛地说,各种数据存储库中的数字信息量正在以前所未有的速度增长。越来越多的数字信息意味着视觉内容(图像和视频),这种发展导致了计算解决方案落后于当前各种图像/视频搜索,处理和管理需求的情况。在视觉内容和语言之间有一个很大的、尚未弥合的语义鸿沟。寻找图像/视频检索、自动图像/视频注释和类似挑战的解决方案将需要弥合这一差距,而这反过来又需要计算机视觉(CV)和自然语言处理(NLP)领域的专业知识。然而,虽然语言和视觉是人类感知和计算机媒介交流的两种主要形式,但这两个相应的计算科学学科几乎没有相互交谈,这也是语言-视觉差距仍然很大的部分原因:NLP研究可能没有充分意识到涉及视觉内容及其特定语言处理要求的可能应用范围; CV可能倾向于低估语言处理问题的复杂性,目前主要使用基本的语言处理技术,其中存在复杂的,高性能的工具。我们提出了一个关于视觉和语言的EPSRC网络,V&L Net,为CV和NLP的研究人员创建一个论坛,以满足和交流想法,专业知识和技术。英国在NLP和CV方面拥有一些世界领先的研究人员。V&L Net旨在利用这一专业知识,建立新的战略合作伙伴关系,旨在通过开发解决日益多模式世界所带来的困难挑战所需的理论,缩小语言与视觉之间的差距。一个成功的网络将使英国处于开发具有明显商业潜力的语言-视觉交叉解决方案的最前沿。我们在V&L Net的总体目标是创建一个新的跨学科研究社区,致力于为涉及语言和视觉的挑战提供计算解决方案。通过(i)将计算机视觉和语言处理这两个目前独立学科的研究人员聚集在一起,(ii)促进获得相关信息,专业知识和资源,以及(iii)刺激研究和泵启动个人研究项目,我们的目标是产生跨学科研究活动的大幅增加。通过这种工作的增加,带来了计算机视觉和语言处理的专业知识,我们希望看到一系列现实世界挑战和理论问题的解决方案的进步。虽然后者往往会产生更长期的影响(为未来的突破奠定基础),但前者有很大的潜力产生突破性的新产品和服务,即使在短期到中期内也会以多种方式改善人们的生活质量。视力、听力和认知能力有障碍的人将受益于辅助技术,帮助他们获得多种模式。图像搜索和检索的改进将增强在线搜索体验,并帮助医院和警察部队等机构科普他们每天处理的大量图像和视频。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anya Belz其他文献

Generating Irish Text with a Flexible Plug-and-Play Architecture
使用灵活的即插即用架构生成爱尔兰语文本
The ReproGen Shared Task on Reproducibility of Human Evaluations in NLG: Overview and Results
ReproGen 关于 NLG 中人类评估可重复性的共享任务:概述和结果
  • DOI:
    10.18653/v1/2021.inlg-1.24
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anya Belz;Anastasia Shimorina;Shubham Agarwal;Ehud Reiter
  • 通讯作者:
    Ehud Reiter
A Pipeline for Extracting Abstract Dependency Templates for Data-to-Text Natural Language Generation
用于提取数据到文本自然语言生成的抽象依赖模板的管道
Towards a Consensus Taxonomy for Annotating Errors in Automatically Generated Text
走向用于注释自动生成文本中的错误的共识分类法
Quantified Reproducibility Assessment of NLP Results
NLP 结果的量化再现性评估

Anya Belz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anya Belz', 18)}}的其他基金

ReproHum: Investigating Reproducibility of Human Evaluations in Natural Language Processing
ReproHum:研究自然语言处理中人类评估的再现性
  • 批准号:
    EP/V05645X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
Generation Challenges 2011: Towards a Surface Realisation Shared Task
2011 年世代挑战:迈向表面实现共享任务
  • 批准号:
    EP/I032320/1
  • 财政年份:
    2011
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
Generation Challenges 2010
2010 年世代挑战
  • 批准号:
    EP/H032886/1
  • 财政年份:
    2010
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
Generation Challenges 2009
2009 年世代挑战
  • 批准号:
    EP/G03995X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
REG Challenge 2008: A Shared Task Evaluation Event for Referring Expression Generation
REG Challenge 2008:参考表达式生成的共享任务评估活动
  • 批准号:
    EP/F059760/1
  • 财政年份:
    2008
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
Prodigy: Probabilistic Deep Generation
Prodigy:概率深度生成
  • 批准号:
    EP/E029116/1
  • 财政年份:
    2007
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
  • 批准号:
    BB/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Research Grant
Conference: Workshop to Build a Vision and Strategy for Creating a National Network of Academic Cloud and Self-Driving Labs
会议:构建创建全国学术云和自动驾驶实验室网络的愿景和战略的研讨会
  • 批准号:
    2335891
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating the Impact of the Promoting Active Learning and Mentoring (PALM) Network on Vision
协作研究:评估促进主动学习和指导 (PALM) 网络对视觉的影响
  • 批准号:
    2223276
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating the Impact of the Promoting Active Learning and Mentoring (PALM) Network on Vision
协作研究:评估促进主动学习和指导 (PALM) 网络对视觉的影响
  • 批准号:
    2223350
  • 财政年份:
    2023
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Predictive Coding Network for Human Vision
CRCNS 研究提案:人类视觉预测编码网络
  • 批准号:
    2112773
  • 财政年份:
    2021
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Continuing Grant
Testing the limits of deep neural network models of human vision with optimized stimuli
用优化的刺激测试人类视觉深度神经网络模型的极限
  • 批准号:
    1948004
  • 财政年份:
    2020
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Standard Grant
Visual servo control by multi-eye high-speed vision network placed on robot body surface
通过放置在机器人本体表面的多眼高速视觉网络进行视觉伺服控制
  • 批准号:
    19H02102
  • 财政年份:
    2019
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NETWORK BETWEEN THE AMYGDALA AND CORTEX FOR THE AFFECTIVE CONTROL OF VISION
杏仁核和皮层之间用于视觉情感控制的网络
  • 批准号:
    9299019
  • 财政年份:
    2017
  • 资助金额:
    $ 13.28万
  • 项目类别:
RCN-UBE: PULSE Ambassadors - Creating a National Leadership Network to Accelerate Departmental Transformation towards Vision and Change
RCN-UBE:PULSE 大使 - 创建国家领导网络,加速部门转型,实现愿景和变革
  • 批准号:
    1624182
  • 财政年份:
    2016
  • 资助金额:
    $ 13.28万
  • 项目类别:
    Continuing Grant
IGF::OT::IGF An Integrated Data Network for Congenital Heart Disease: A Strategic Vision
IGF::OT::IGF 先天性心脏病综合数据网络:战略愿景
  • 批准号:
    9173522
  • 财政年份:
    2014
  • 资助金额:
    $ 13.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了