Materials for fusion & fission power

融合材料

基本信息

  • 批准号:
    EP/H018921/1
  • 负责人:
  • 金额:
    $ 743.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

It has been predicted that by 2012 the UK's electricity generating capacity will no longer be enough to meet demand. Reliable new sources of multi-gigawatt electrical power will be vital for social stability and economic strength. Nuclear fusion and advanced fission power plants have been proposed, with possible years for operation in the range 2025 (advanced fission) to 2050 (fusion). These have the potential for large-scale, clean, CO2-free power generation for generations. However, they will not be viable unless some very difficult materials science problems are solved. The structural materials from which the power plants' core components will be built must have high strength and toughness at high temperatures, and retain good properties for decades despite being subjected to radiation damage from high-energy neutrons. The neutrons knock atoms from their positions, scrambling the materials' carefully-designed microstructures, and produce many small crystal defects which make the materials more brittle. The neutrons, unlike those in current nuclear power plants, have enough energy to cause transmutation reactions: this causes two problems. First, many elements ordinarily used in strong alloys cannot be used, because their transmutation products are highly radioactive for thousands of years, so we must design new strong alloys using a very restricted range of elements. Second, helium is produced in most reactions, and adds to the embrittling effects of the radiation damage.There are no fast-neutron facilities, and even slow-neutron test reactors are very expensive to use and take years for a single run . To develop the critical new materials quickly, we need to act now. We can use computer modelling of how the radiation-induced defects are formed, how they behave and how they interact to change material properties. Experimentally, ion irradiation can be used to produce the same damage types as from fast neutrons, in a few hours and without producing hard-to-handle radioactive specimens; but the amount of material affected is tiny - a layer 1/1000 mm thick. We have developed new techniques to test specimens made in these thin layers, and can use advanced microscopy to look at the radiation damage. This project will develop modelling and experiment further, and use them together so that experiments provide information to models and test their predictions. Researchers at Oxford, Liverpool and Salford Universities, UKAEA Fusion and the CEA will work together in a large project to form specialist small research teams developing innovative modelling and experimental methods, working on a problems critical to the applications of new alloys of steel and tungsten: how radiation damage can concentrate some elements at grain boundaries, making them brittle; how radiation effects on nanometre-sized oxide particles included in the alloys for high-temperature strength and to soak up helium and hydrogen.The project will make major advances in innovative experimental and modelling techniques operating at the microstructural scale where materials properties are determined, and it will verify the models' predictions against experimental data. Its success will significantly speed development of the new materials that are essential for the commercial realisation of fusion and new-generation fission power. It will help the UK to lead scientific developments in new materials and to train future experts for future fission and fusion programmes. The developments are also relevant to other important structural integrity issues (e.g. embrittlement, ductile-brittle transitions, stress corrosion cracking, and alloy strength). The project's leaders currently head world-leading research efforts in the areas which will form this integrated project. They are well-linked into the international fusion and UK fission communities, representatives of which will advise on the programme's direction and will speedily implement its results.
据预测,到2012年,英国的发电能力将不再足以满足需求。可靠的多吉瓦电力新来源对于社会稳定和经济实力至关重要。核聚变和先进的裂变发电厂已经提出,可能的运行年数在2025年(先进的裂变)至2050年(聚变)之间。这些都有潜力为几代人提供大规模,清洁,无二氧化碳的发电。然而,除非一些非常困难的材料科学问题得到解决,否则它们将是不可行的。建造核电站核心部件的结构材料必须在高温下具有高强度和韧性,并且即使受到高能中子的辐射损伤也能保持数十年的良好性能。中子将原子从它们的位置撞击,扰乱材料精心设计的微观结构,并产生许多使材料更脆的小晶体缺陷。与当前核电站中的中子不同,这些中子有足够的能量引起嬗变反应:这会导致两个问题。首先,许多通常用于强合金的元素不能使用,因为它们的嬗变产物在数千年内具有高放射性,因此我们必须使用非常有限的元素来设计新的强合金。第二,大多数反应都会产生氦,这会增加辐射损伤的脆化效应。没有快中子设施,即使是慢中子试验反应堆也非常昂贵,一次运行需要数年时间。为了快速开发关键的新材料,我们需要立即采取行动。我们可以使用计算机模拟辐射诱导缺陷如何形成,它们如何表现以及它们如何相互作用以改变材料特性。在实验上,离子辐照可以在几个小时内产生与快中子相同的损伤类型,而不会产生难以处理的放射性样品;但受影响的材料量很小-1/1000 mm厚。我们已经开发了新的技术来测试在这些薄层中制成的样品,并可以使用先进的显微镜来观察辐射损伤。该项目将进一步发展建模和实验,并将它们结合起来使用,以便实验为模型提供信息并测试其预测。牛津大学、利物浦大学和索尔福德大学、英国原子能机构聚变研究所和英国原子能机构的研究人员将在一个大型项目中合作,组成专业的小型研究小组,开发创新的建模和实验方法,研究对钢和钨的新型合金应用至关重要的问题:辐射损伤如何使某些元素集中在晶界,使其变脆;辐射如何影响合金中纳米尺寸的氧化物颗粒,以获得高温强度并吸收氦和氢。该项目将在确定材料性能的微观结构尺度上的创新实验和建模技术方面取得重大进展,它将根据实验数据验证模型的预测。它的成功将大大加快新材料的开发,这些新材料对于聚变和新一代裂变发电的商业实现至关重要。它将帮助联合王国领导新材料的科学发展,并为未来的裂变和聚变方案培训未来的专家。这些发展也与其他重要的结构完整性问题有关(例如脆化、韧脆转变、应力腐蚀开裂和合金强度)。该项目的领导者目前领导着将形成这一综合项目的领域的世界领先的研究工作。他们与国际聚变和英国裂变社区有着良好的联系,这些社区的代表将对该计划的方向提出建议,并将迅速实施其结果。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films
  • DOI:
    10.1016/j.tsf.2012.02.059
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    D. Armstrong;A. Haseeb;S. Roberts;A. Wilkinson;K. Bade
  • 通讯作者:
    D. Armstrong;A. Haseeb;S. Roberts;A. Wilkinson;K. Bade
Effect of dislocation density on improved radiation hardening resistance of nano-structured tungsten-rhenium
Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium
  • DOI:
    10.1016/j.jnucmat.2012.07.044
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Armstrong, D. E. J.;Yi, X.;Roberts, S. G.
  • 通讯作者:
    Roberts, S. G.
Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials
  • DOI:
    10.1016/j.jnucmat.2015.01.053
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Armstrong, D. E. J.;Hardie, C. D.;Roberts, S. G.
  • 通讯作者:
    Roberts, S. G.
Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten
  • DOI:
    10.1063/1.4811825
  • 发表时间:
    2013-06-24
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Armstrong, D. E. J.;Edmondson, P. D.;Roberts, S. G.
  • 通讯作者:
    Roberts, S. G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Roberts其他文献

Implicit Multirate GARK Methods
隐式多速率 GARK 方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Steven Roberts;J. Loffeld;A. Sarshar;C. Woodward;Adrian Sandu
  • 通讯作者:
    Adrian Sandu
Feminine Discourses in r/gaming
r/游戏中的女性话语
  • DOI:
    10.1007/978-3-030-28262-2_5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Maloney;Steven Roberts;Timothy Graham
  • 通讯作者:
    Timothy Graham
‘Men Actually Need to Practice the Conversation’: Collective Learnings from Australian Programs Seeking to Challenge Outdated Masculine Stereotypes and Norms
“男人实际上需要练习对话”:澳大利亚项目的集体学习,旨在挑战过时的男性刻板印象和规范
  • DOI:
    10.1177/10608265221088937
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Stewart;Steven Roberts;Breanna Wright;Liam Smith
  • 通讯作者:
    Liam Smith
Capital limits: social class, motivations for term-time job searching and the consequences of joblessness among UK university students
资本限制:社会阶层、学期内找工作的动机以及英国大学生失业的后果
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven Roberts;Zhen Li
  • 通讯作者:
    Zhen Li
PRACTICALMULTIRATE TIME INTEGRATION METHODS
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven Roberts
  • 通讯作者:
    Steven Roberts

Steven Roberts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Roberts', 18)}}的其他基金

COLLABORATIVE RESEARCH: URoL : Epigenetics 2: Predicting phenotypic and eco-evolutionary consequences of environmental-energetic-epigenetic linkages
合作研究:URoL:表观遗传学 2:预测环境-能量-表观遗传联系的表型和生态进化后果
  • 批准号:
    1921149
  • 财政年份:
    2019
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Does ocean acidification induce a methylation response that affects the fitness of the next generation in oysters?
合作研究:海洋酸化是否会引起影响牡蛎下一代健康的甲基化反应?
  • 批准号:
    1634167
  • 财政年份:
    2017
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Standard Grant
Advanced Nuclear Materials
先进核材料
  • 批准号:
    EP/P001645/1
  • 财政年份:
    2016
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Research Grant
RaDIATE
辐射
  • 批准号:
    ST/L002086/1
  • 财政年份:
    2014
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Research Grant
US DOE IRP on Simulation of Neutron Irradiation
美国能源部 IRP 中子辐照模拟
  • 批准号:
    EP/L025817/1
  • 财政年份:
    2014
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Research Grant
DNA Methylation as a Mechanism to Increase Adaptive Potential in Invertebrates
DNA 甲基化作为增加无脊椎动物适应潜力的机制
  • 批准号:
    1158119
  • 财政年份:
    2012
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Standard Grant
Ion irradiations of fusion reactor materials
聚变反应堆材料的离子辐照
  • 批准号:
    EP/F004451/1
  • 财政年份:
    2007
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Research Grant

相似国自然基金

PI(3,5)P2介导溶酶体与黑素小体互作调控黑素小体发生的分子细胞机制
  • 批准号:
    92054102
  • 批准年份:
    2020
  • 资助金额:
    87.0 万元
  • 项目类别:
    重大研究计划
细胞代谢调控线粒体稳态及其与细胞器互作的机制研究
  • 批准号:
    91954204
  • 批准年份:
    2019
  • 资助金额:
    314.0 万元
  • 项目类别:
    重大研究计划
膜蛋白TMED10调节非经典分泌分子机制的研究
  • 批准号:
    31872832
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
TBC1d23调节细胞器互作及突变引起脑桥小脑发育不全的机制研究
  • 批准号:
    91854121
  • 批准年份:
    2018
  • 资助金额:
    89.0 万元
  • 项目类别:
    重大研究计划
细胞分泌的调控及相关肠炎的机理研究
  • 批准号:
    31871429
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Munc18b和Munc18c调控GLUT4胞吐的机制研究
  • 批准号:
    31871425
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
酿酒酵母中ESCRT复合体在自噬前体闭合中的作用及机制研究
  • 批准号:
    31871428
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
表皮生长因子从反式高尔基网络运输到细胞膜的分子机制及表皮生长因子受体新靶点的探索
  • 批准号:
    31871421
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Mea6基因缺失导致糖尿病的机制研究
  • 批准号:
    31771569
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
细胞囊泡转运包被包被复合体COPI的组装与分子调控
  • 批准号:
    31771566
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nuclear data measurements at n_TOF for fusion and fission applications
用于聚变和裂变应用的 n_TOF 核数据测量
  • 批准号:
    2904692
  • 财政年份:
    2023
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Studentship
How groups in a group move: Understanding coordination of fission fusion dynamics of chimpanzees in a Savannah-Woodland mosaic
群体中的群体如何移动:了解萨凡纳-林地马赛克中黑猩猩裂变融合动力学的协调
  • 批准号:
    2843351
  • 财政年份:
    2023
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Studentship
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
  • 批准号:
    10724005
  • 财政年份:
    2023
  • 资助金额:
    $ 743.25万
  • 项目类别:
INNUMAT: Innovative Structural Materials for Fission and Fusion
INNUMAT:用于裂变和聚变的创新结构材料
  • 批准号:
    10047145
  • 财政年份:
    2022
  • 资助金额:
    $ 743.25万
  • 项目类别:
    EU-Funded
Structural basis of dynamin-mediated membrane fission actin bundling and interaction with binding partners.
动力介导的膜裂变肌动蛋白捆绑和与结合伙伴相互作用的结构基础。
  • 批准号:
    10525706
  • 财政年份:
    2022
  • 资助金额:
    $ 743.25万
  • 项目类别:
Structural basis of dynamin-mediated membrane fission actin bundling and interaction with binding partners.
动力介导的膜裂变肌动蛋白捆绑和与结合伙伴相互作用的结构基础。
  • 批准号:
    10540396
  • 财政年份:
    2022
  • 资助金额:
    $ 743.25万
  • 项目类别:
Tritium removal from molten salt media in nuclear fusion and fission processes
核聚变和裂变过程中熔盐介质中的氚去除
  • 批准号:
    2786566
  • 财政年份:
    2022
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Studentship
Role of the mitochondrial carrier family protein SLC25A46 in mitochondrial dynamics and early onset neurodegenerative diseases
线粒体载体家族蛋白SLC25A46在线粒体动力学和早发性神经退行性疾病中的作用
  • 批准号:
    445205
  • 财政年份:
    2021
  • 资助金额:
    $ 743.25万
  • 项目类别:
    Operating Grants
Critical role of Mitochondrial Fission/Fusion in Regulation of Microvascular Endothelial Function
线粒体裂变/融合在微血管内皮功能调节中的关键作用
  • 批准号:
    10180126
  • 财政年份:
    2021
  • 资助金额:
    $ 743.25万
  • 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
  • 批准号:
    10322143
  • 财政年份:
    2021
  • 资助金额:
    $ 743.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了