Physical, cellular, and molecular control of tissue fission and fusion

组织裂变和融合的物理、细胞和分子控制

基本信息

  • 批准号:
    10724005
  • 负责人:
  • 金额:
    $ 10.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-19 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Tissue fission and fusion give forms to functional organs during embryonic development. Abnormalities in these processes can lead to congenital birth defects and syndromes such as cleft palate, Meckel-Gruber syndrome, and persistent truncus arteriosus. During remodeling, cells must generate force, reconfigure cell contacts, and interact with their surroundings. The mechanisms underlying the cellular and molecular regulation mechanisms underlying tissue fission and fusion are poorly understood. The formation of mechano-sensory organs called neuromasts in zebrafish provides an ideal model in which to decipher these processes. During neuromast morphogenesis, the pro-neuromast splits from the migrating posterior lateral line primordium and later fuses with skin to open tricellular junctions in skin cells; hence, I can study both tissue fission and fusion in this morphogenetic event. In this model, my preliminary findings suggest a mechanical ‘tug of war’ between cells and tissues in primordium splitting and neuromast fusion with the skin. In the proposed research, I will apply state- of-the-art in vivo biophysical measurements to determine whether RhoA-mediated actomyosin drives neuromast deposition (Aim 1). I will then use a novel protein depletion approach that offers spatial and temporal control to test whether cell-cell and cell-extracellular matrix (ECM) adhesions mediate neuromast budding (Aim 2) and investigate the mechanism by which neuromasts fuse with skin (Aim 3). The physical, molecular and cellular principles revealed in this study will be widely applicable to morphogenetic events involving tissue fission and fusion while maintaining the integrity of single cells. Moreover, findings from this study will improve our understanding of congenital birth defects due to abnormal tissue fission and fusion and further inform strategies to correct these defects. To accomplish the proposed research, I will combine my skills in cell mechanics analyses developed as a graduate student; new skills acquired in my early postdoctoral training in zebrafish genetics, molecular biology and high-resolution live imaging; and the proposed technical training during the K99 phase to implement in vivo biophysical measurements, including measuring in vivo cell-ECM stress and cell-cell adhesion tension. As I start my own lab, I will be mentored by Drs. Holger Knaut, Daniele Panozzo, Anna- Katerina Hadjantonakis, Jeremy Nance, Carsten Grashoff, and Johannes Stegmaier. They will offer not only their scientific expertise in zebrafish genetics, biophysics, quantitative imaging, and modeling but also with their valuable experience in mentoring students, grantsmanship, publication, establishing scientific collaborations, and lab management. My long-term career goal is to head a research laboratory and uncover the genetic, biophysical, cellular, and molecular regulation of cell and tissue mechanics in embryonic morphogenesis. I have made significant progress toward this goal with research experience, successful collaborations, and publications. However, I firmly believe that the additional technical and career training proposed during the K99 mentored phase is necessary for me to successfully transition to my independence.
项目概要 在胚胎发育过程中,组织分裂和融合形成功能器官。这些方面出现异常 过程可能导致先天性出生缺陷和综合征,例如腭裂、梅克尔-格鲁伯综合征、 和持久动脉干。在重塑过程中,细胞必须产生力,重新配置细胞接触,并 与周围环境互动。细胞和分子调控机制的基础机制 人们对潜在的组织裂变和融合知之甚少。机械感觉器官的形成称为 斑马鱼的神经丘提供了破译这些过程的理想模型。神经丘期间 在形态发生过程中,前神经丘从迁移的后侧线原基中分裂出来,然后与 皮肤打开皮肤细胞中的三细胞连接;因此,我可以在此研究组织裂变和融合 形态发生事件。在这个模型中,我的初步发现表明细胞和细胞之间存在机械的“拉锯战” 原基分裂和神经丘与皮肤融合的组织。在拟议的研究中,我将应用状态- 最先进的体内生物物理测量以确定 RhoA 介导的肌动球蛋白是否驱动神经丘 沉积(目标 1)。然后,我将使用一种新颖的蛋白质消耗方法,该方法提供空间和时间控制 测试细胞-细胞和细胞-细胞外基质 (ECM) 粘附是否介导神经丘出芽(目标 2)和 研究神经丘与皮肤融合的机制(目标 3)。物理、分子和细胞 这项研究揭示的原理将广泛适用于涉及组织裂变和 融合,同时保持单细胞的完整性。此外,这项研究的结果将改善我们的 了解由于异常组织裂变和融合导致的先天性出生缺陷,并进一步提供策略 来纠正这些缺陷。为了完成拟议的研究,我将结合我在细胞力学方面的技能 作为研究生进行的分析;我在早期斑马鱼博士后培训中获得的新技能 遗传学、分子生物学和高分辨率实时成像;以及 K99 期间拟议的技术培训 阶段实施体内生物物理测量,包括测量体内细胞 ECM 应力和细胞-细胞 粘合张力。当我开始自己的实验室时,我将得到博士的指导。霍尔格·克瑙特、丹尼尔·帕诺佐、安娜- 卡特琳娜·哈詹托纳基斯、杰里米·南斯、卡斯滕·格拉肖夫和约翰内斯·斯特格迈尔。他们不仅会提供 他们在斑马鱼遗传学、生物物理学、定量成像和建模方面的科学专业知识,以及他们的 在指导学生、资助、出版、建立科学合作方面的宝贵经验, 和实验室管理。我的长期职业目标是领导一个研究实验室并揭示遗传、 胚胎形态发生中细胞和组织力学的生物物理、细胞和分子调节。我有 凭借研究经验、成功的合作和出版物,在实现这一目标方面取得了重大进展。 然而,我坚信 K99 指导期间提出的额外技术和职业培训 这个阶段对于我成功过渡到独立是必要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiyi Qian其他文献

Weiyi Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了