Algebraic Cycles, Hodge Theory and Arithmetic
代数圈、霍奇理论和算术
基本信息
- 批准号:EP/H021159/1
- 负责人:
- 金额:$ 13.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The antique origins of algebraic geometry lie in the study of solution sets of polynomial equations, in which complex, symplectic, and arithmetic geometry are bound tightly together. Many of the most spectacular recent developments in the subject have occurred through the consideration of these aspects in tandem: for example, the duality between symplectic and complex geometry that is mirror symmetry; and the body of work surrounding conjectures of Beilinson, Bloch, and Hodge on the transcendental invariants of generalized algebraic cycles. In previous work, the proposer has found hitherto unknown concrete formulas for the so-called Abel-Jacobi invariants and applied them to explain asymptotic behavior of instanton numbers in local mirror symmetry, as well as to prove new results on cycles themselves.This project will consider novel applications of generalized cycles and their invariants to closely related problems in Hodge theory, string theory and arithmetic algebraic geometry. It will also work out poorly understood aspects of period maps and period domains underlying some of these applications.Specifically, we plan to study several topics which are bound together by Abel-Jacobi invariants and their limits: the boundary behavior of Hodge-theoretic moduli of algebraic varieties (in the context of period domains and limit mixed Hodge structures); applications of cycles to irrationality proofs; and the role played by generalized cycles in homological mirror symmetry and heterotic/type II string duality, with a view to establishing higher algebraic K-theory as a fundamental new tool in theoretical physics. We expect that, in turn, these physics applications will shed light on the mysterious connection between arithmetic and symplectic geometry highlighted by the local mirror symmetry result.
代数几何的古老起源在于对多项式方程解集的研究,其中复几何、辛几何和算术几何紧密地联系在一起。该学科中许多最引人注目的最新发展都是通过对这些方面的综合考虑而发生的:例如,辛几何和复几何之间的对偶性,即镜像对称;以及围绕Beilinson, Bloch和Hodge关于广义代数循环的超越不变量的猜想的工作。在之前的工作中,提出者已经发现了迄今为止未知的所谓的Abel-Jacobi不变量的具体公式,并应用它们来解释局部镜像对称中瞬时数的渐近行为,以及证明关于循环本身的新结果。本项目将考虑广义循环及其不变量在Hodge理论、弦理论和算术代数几何中密切相关的问题中的新应用。它还将解决一些鲜为人知的时期地图和这些应用程序背后的时期域的问题。具体来说,我们计划研究由Abel-Jacobi不变量及其极限结合在一起的几个主题:代数变量的Hodge理论模的边界行为(在周期域和极限混合Hodge结构的背景下);循环在无理性证明中的应用以及广义环在同调镜像对称和杂杂/ II型弦对偶中的作用,以期建立作为理论物理基础新工具的高代数k理论。我们期望,反过来,这些物理应用将揭示算术和辛几何之间的神秘联系,这是局部镜像对称结果所突出的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Kerr其他文献
COMORBIDITIES AND OUTCOMES IN PATIENTS WITH NON-RHEUMATIC TRICUSPID VALVE DISEASE
- DOI:
10.1016/s0735-1097(19)32625-7 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Sreekanth Vemulapalli;Christopher Meduri;Matthew Kerr;Greg Roberts;Julie Prillinger;Patrick McCarthy - 通讯作者:
Patrick McCarthy
IMPACT OF SURGICAL INTERVENTION ON HEALTHCARE UTILIZATION IN PATIENTS WITH NON-RHEUMATIC TRICUSPID VALVE DISEASE
- DOI:
10.1016/s0735-1097(19)32624-5 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Sreekanth Vemulapalli;Christopher Meduri;Matthew Kerr;Greg Roberts;Julie Prillinger;Patrick McCarthy - 通讯作者:
Patrick McCarthy
Interpreting the biological effects of protons as a function of physical quantity: linear energy transfer or microdosimetric lineal energy spectrum?
- DOI:
10.1038/s41598-024-73619-x - 发表时间:
2024-10-24 - 期刊:
- 影响因子:3.900
- 作者:
Fada Guan;Lawrence Bronk;Matthew Kerr;Yuting Li;Leslie A. Braby;Mary Sobieski;Xiaochun Wang;Xiaodong Zhang;Clifford Stephan;David R. Grosshans;Radhe Mohan - 通讯作者:
Radhe Mohan
Theoretically Motivated Search and Detection of Non-thermal Pulsations from PSRs J1747-2958, J2021+3651, and J1826-1256
从 PSR J1747-2958、J2021 3651 和 J1826-1256 中非热脉动的理论驱动搜索和检测
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jian Li;Diego F. Torres;Francesco Coti Zelati;Aless;ro Papitto;Matthew Kerr;N;a Rea - 通讯作者:
a Rea
40: Epoetin Alfa (EPO) Utilization Trends in Medicare Patients With Chronic Kidney Disease (CKD) Not on Dialysis
- DOI:
10.1053/j.ajkd.2010.02.047 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Bailey;Fotios Kokkotos;Matthew Kerr;Sherlynn Shen;Mekre Senbetta;R. Scott McKenzie - 通讯作者:
R. Scott McKenzie
Matthew Kerr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Kerr', 18)}}的其他基金
Asymptotic Hodge Theory, Fibered Motives, and Algebraic Cycles
渐近霍奇理论、纤维动机和代数圈
- 批准号:
2101482 - 财政年份:2021
- 资助金额:
$ 13.01万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Hodge Theory, Moduli, and Representation Theory
FRG:协作研究:霍奇理论、模数和表示理论
- 批准号:
1361147 - 财政年份:2014
- 资助金额:
$ 13.01万 - 项目类别:
Continuing Grant
Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles, and Arithmetic
霍奇理论的最新进展:周期域、代数环和算术
- 批准号:
1259024 - 财政年份:2013
- 资助金额:
$ 13.01万 - 项目类别:
Standard Grant
Algebraic Cycles, Hodge Theory, and Arithmetic
代数圈、霍奇理论和算术
- 批准号:
1068974 - 财政年份:2011
- 资助金额:
$ 13.01万 - 项目类别:
Standard Grant
相似海外基金
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2022
- 资助金额:
$ 13.01万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2021
- 资助金额:
$ 13.01万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Hodge Theory, Fibered Motives, and Algebraic Cycles
渐近霍奇理论、纤维动机和代数圈
- 批准号:
2101482 - 财政年份:2021
- 资助金额:
$ 13.01万 - 项目类别:
Standard Grant
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2020
- 资助金额:
$ 13.01万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2019
- 资助金额:
$ 13.01万 - 项目类别:
Discovery Grants Program - Individual
Hodge Type Realizations of Algebraic Cycles
代数环的 Hodge 型实现
- 批准号:
RGPIN-2018-04344 - 财政年份:2018
- 资助金额:
$ 13.01万 - 项目类别:
Discovery Grants Program - Individual
Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles, and Arithmetic
霍奇理论的最新进展:周期域、代数环和算术
- 批准号:
1259024 - 财政年份:2013
- 资助金额:
$ 13.01万 - 项目类别:
Standard Grant
Algebraic cycles, regulators and Hodge theory
代数环、调节子和霍奇理论
- 批准号:
121004-2008 - 财政年份:2012
- 资助金额:
$ 13.01万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Cycles, Hodge Theory, and Arithmetic
代数圈、霍奇理论和算术
- 批准号:
1068974 - 财政年份:2011
- 资助金额:
$ 13.01万 - 项目类别:
Standard Grant














{{item.name}}会员




