Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles, and Arithmetic
霍奇理论的最新进展:周期域、代数环和算术
基本信息
- 批准号:1259024
- 负责人:
- 金额:$ 2.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A summer school and conference on Hodge theory will be held at the University of British Columbia (Vancouver, Canada) from June 10-20, 2013. This award will support 30 US participants at various stages of their careers. The 24 invited speakers are leading experts in aspects of complex and arithmetic geometry, algebraic cycles, and representation theory, which are in the early stages of a synthesis around the study of period mappings and generalized period domains. The conference will accelerate this process and give graduate students and recent Ph.D.'s an opportunity to enter an emerging discipline.In its simplest form, Hodge theory is the study of periods -- integrals of algebraic differential forms which arise in the study of complex geometry, number theory and physics. Its difficulty and richness arise in part from the non-algebraicity of these integrals. What algebraic structure they do have is recorded by symmetry groups called Mumford-Tate groups, and according to the Hodge conjecture (and its variants) should be explained by the presence of objects called algebraic cycles. The conference will serve to disseminate recent progress on both of these fronts, create new interdisciplinary collaborations, and train the next generation of Hodge theorists.The web site for the conference ishttp://www.pims.math.ca/scientific-event/130610-rahtpdaca
霍奇理论暑期班和会议将于2013年6月10日至20日在不列颠哥伦比亚大学(加拿大温哥华)举行。该奖项将支持30名处于职业生涯不同阶段的美国参与者。被邀请的24位演讲者是复数和算术几何、代数循环和表示理论方面的主要专家,这些方面处于围绕周期映射和广义周期域研究的综合的早期阶段。这次会议将加速这一进程,并为研究生和新近获得博士学位的S提供进入一门新兴学科的机会。霍奇理论最简单的形式是研究周期--在复杂几何、数论和物理研究中出现的代数微分形式的积分。它的难度和丰富性部分源于这些积分的非代数性。它们所具有的代数结构是由称为Mumford-Tate群的对称群记录的,根据Hodge猜想(及其变体),应该通过称为代数圈的对象的存在来解释。这次会议将有助于传播这两方面的最新进展,创建新的跨学科合作,并培训下一代霍奇理论家。会议的网站为ishttp://www.pims.math.ca/scientific-event/130610-rahtpdaca
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Kerr其他文献
COMORBIDITIES AND OUTCOMES IN PATIENTS WITH NON-RHEUMATIC TRICUSPID VALVE DISEASE
- DOI:
10.1016/s0735-1097(19)32625-7 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Sreekanth Vemulapalli;Christopher Meduri;Matthew Kerr;Greg Roberts;Julie Prillinger;Patrick McCarthy - 通讯作者:
Patrick McCarthy
IMPACT OF SURGICAL INTERVENTION ON HEALTHCARE UTILIZATION IN PATIENTS WITH NON-RHEUMATIC TRICUSPID VALVE DISEASE
- DOI:
10.1016/s0735-1097(19)32624-5 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Sreekanth Vemulapalli;Christopher Meduri;Matthew Kerr;Greg Roberts;Julie Prillinger;Patrick McCarthy - 通讯作者:
Patrick McCarthy
Interpreting the biological effects of protons as a function of physical quantity: linear energy transfer or microdosimetric lineal energy spectrum?
- DOI:
10.1038/s41598-024-73619-x - 发表时间:
2024-10-24 - 期刊:
- 影响因子:3.900
- 作者:
Fada Guan;Lawrence Bronk;Matthew Kerr;Yuting Li;Leslie A. Braby;Mary Sobieski;Xiaochun Wang;Xiaodong Zhang;Clifford Stephan;David R. Grosshans;Radhe Mohan - 通讯作者:
Radhe Mohan
Theoretically Motivated Search and Detection of Non-thermal Pulsations from PSRs J1747-2958, J2021+3651, and J1826-1256
从 PSR J1747-2958、J2021 3651 和 J1826-1256 中非热脉动的理论驱动搜索和检测
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jian Li;Diego F. Torres;Francesco Coti Zelati;Aless;ro Papitto;Matthew Kerr;N;a Rea - 通讯作者:
a Rea
40: Epoetin Alfa (EPO) Utilization Trends in Medicare Patients With Chronic Kidney Disease (CKD) Not on Dialysis
- DOI:
10.1053/j.ajkd.2010.02.047 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Bailey;Fotios Kokkotos;Matthew Kerr;Sherlynn Shen;Mekre Senbetta;R. Scott McKenzie - 通讯作者:
R. Scott McKenzie
Matthew Kerr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Kerr', 18)}}的其他基金
Asymptotic Hodge Theory, Fibered Motives, and Algebraic Cycles
渐近霍奇理论、纤维动机和代数圈
- 批准号:
2101482 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Hodge Theory, Moduli, and Representation Theory
FRG:协作研究:霍奇理论、模数和表示理论
- 批准号:
1361147 - 财政年份:2014
- 资助金额:
$ 2.8万 - 项目类别:
Continuing Grant
Algebraic Cycles, Hodge Theory, and Arithmetic
代数圈、霍奇理论和算术
- 批准号:
1068974 - 财政年份:2011
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Algebraic Cycles, Hodge Theory and Arithmetic
代数圈、霍奇理论和算术
- 批准号:
EP/H021159/1 - 财政年份:2010
- 资助金额:
$ 2.8万 - 项目类别:
Research Grant
相似海外基金
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
- 批准号:
2349452 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
- 批准号:
2340176 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Continuing Grant