Illuminating Colour Constancy: from Physics to Photography

照明色彩恒常性:从物理到摄影

基本信息

  • 批准号:
    EP/H022236/1
  • 负责人:
  • 金额:
    $ 82.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

In daily life, we depend on colour images which represent the real world, from photographs of key personal events to pictures of possible purchases. In general, these are poor approximations of the real thing. Our aim is to understand better how we perceive colours in the real world, and how to recreate that perception with images. Central to these aims is colour constancy, a fundamental phenomenon which keeps object colours stable even under large changes in the colour of the illumination - we see an apple as red whether it is under bluish daylight or yellowish tungsten light. Camera sensors, which faithfully record the changing light signals, do not naturally possess colour constancy. But digital cameras are often equipped with special colour balancing modules to cope with changes in lighting, and the photographs they produce may be further processed to remove colour casts. In computer vision, such 'color correction' algorithms are necessary to enable machines to use colour as a reliable cue - for example, in automated grading of manufactured goods such as tiles. Human vision and computer vision are typically studied in isolation from each other: the first aims to understand why colours appear as they do to humans, and the other to make them as useful as possible to machines, regardless of how they appear. These two goals are generally not identical, because neither human nor computer colour constancy is perfect.To bridge colour constancy from humans to machines we will perform an innovative set of experiments. First, we will systematically study illuminant metamerism. Metamerism is what makes all image reproduction work: two stimuli with vastly different colour spectra can induce the same colour percept. The light invoking a white percept on a TV has a highly spiky spectrum compared to the flat spectral reflectance of a piece of white paper in daylight. Yet, illuminants which look the same when shining on white paper can sometimes make other surfaces change appearance. We experience this phenomenon when we buy clothes which look good under the artificial shop lights but less satisfactory when we take them outdoors. We will quantify this effect for real scenes under real lights using a new 'tuneable' spectral illuminator with which we can generate any light spectrum. Our second innovation is to make use of newly available High-Dynamic-Range (HDR) displays. In contradistinction to the real world where the brightest point in the scene may be a 100000 times as bright as the darkest point, most displays struggle to produce a dynamic range of even 1000:1 and printed photographs are at most 100:1. Yet we know that colour perception depends on the overall dynamic range of the scene. The new HDR displays can output contrast ratios of 100000:1 and we will use them to measure constancy in lab conditions but with real world brightnesses. A third challenge that we face in making colour photographs match our perception of the real world is the inaccuracy of colour memory. Typically, when we view a photograph, we do not have the real thing to compare it with, but must recall the original scene from memory. The imperfections of our memory then may taint our judgment. It is well known that our memory colours for familiar objects such as sky, grass, and skin tend to be 'over-saturated' -- grass may be remembered as greener and the sky as bluer than they actually are. Thus, when we test colour correction algorithms by asking people which image they prefer, we might find that they do not prefer the one that most accurately reproduces the original scene, but instead matches their imperfect memory. We will quantify these effects of memory and preference. Finally, our research will, at all stages, consider how measured percepts of colour might be predicted by mathematical models. Ultimately, we will design algorithms to automatically see colours as we do, making for better photographs and more useful vision machines.
在日常生活中,我们依赖于代表真实的世界的彩色图像,从重要个人事件的照片到可能购买的照片。一般来说,这些都是对真实的事物的拙劣近似。我们的目标是更好地理解我们如何感知真实的世界中的颜色,以及如何用图像重建这种感知。这些目标的核心是颜色恒常性,这是一种基本现象,即使在照明颜色发生很大变化的情况下,也能保持物体颜色稳定--无论是在蓝色日光下还是在黄色钨丝灯下,我们都能看到苹果是红色的。照相机传感器忠实地记录变化的光信号,但不自然地具有颜色恒定性。但数码相机通常配备有特殊的色彩平衡模块,以科普光线的变化,它们产生的照片可能会进一步处理,以消除偏色。在计算机视觉中,这种“颜色校正”算法是必要的,使机器能够使用颜色作为可靠的线索-例如,在瓷砖等制成品的自动分级中。人类视觉和计算机视觉通常是相互孤立地研究的:第一个旨在了解为什么颜色会像人类一样出现,而另一个旨在使它们对机器尽可能有用,无论它们如何出现。这两个目标通常是不相同的,因为人类和计算机的颜色恒定性都不是完美的。为了将颜色恒定性从人类连接到机器,我们将进行一系列创新的实验。首先,我们将系统地研究光源同色异谱。同色异谱是使所有图像复制工作的原因:两种具有截然不同色谱的刺激物可以引起相同的颜色感受。在电视上引起白色光反射的光具有高度尖峰光谱,而在日光下一张白色纸的光谱反射率是平坦的。然而,当照在白色纸上时看起来相同的光源有时会使其他表面改变外观。当我们买的衣服在商店的人造灯光下看起来很好,但当我们把它们带到户外时,就不那么令人满意了。我们将量化这种效果的真实的场景下的真实的灯光使用一种新的'可调'光谱照明器,我们可以产生任何光谱。我们的第二项创新是利用新推出的高动态范围(HDR)显示器。与场景中最亮的点可能是最暗点的100000倍的真实的世界相反,大多数显示器努力产生甚至1000:1的动态范围,而打印照片最多为100:1。然而,我们知道颜色感知取决于场景的整体动态范围。新的HDR显示器可以输出100000:1的对比度,我们将使用它们来测量实验室条件下的恒定性,但具有真实的世界亮度。我们在制作彩色照片时所面临的第三个挑战是我们对真实的世界的感知是不准确的颜色记忆。通常,当我们观看一张照片时,我们没有真实的东西来与之比较,而是必须从记忆中回忆起原始的场景。那么我们记忆的不完美可能会影响我们的判断。众所周知,我们对熟悉物体的记忆颜色,如天空、草地和皮肤,往往是“过饱和”的--草地可能比实际上更绿,天空可能比实际上更蓝。因此,当我们通过询问人们他们更喜欢哪种图像来测试颜色校正算法时,我们可能会发现他们不喜欢最准确地再现原始场景的图像,而是匹配他们不完美的记忆。我们将量化记忆和偏好的这些影响。最后,我们的研究将在所有阶段考虑如何通过数学模型预测测量的颜色感知。最终,我们将设计算法来像我们一样自动看到颜色,从而获得更好的照片和更有用的视觉机器。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Human colour constancy by achromatic adjustment for real scenes under multiple illuminations
通过消色差调整实现多种照明下真实场景的人类色彩恒定性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chriton S
  • 通讯作者:
    Chriton S
The illumination correction bias of the human visual system
人类视觉系统的光照校正偏差
  • DOI:
    10.1167/12.9.64
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Crichton S
  • 通讯作者:
    Crichton S
General ?p constrained approach for colour constancy
颜色恒定性的通用 ?p 约束方法
  • DOI:
    10.1109/iccvw.2011.6130333
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Finlayson G
  • 通讯作者:
    Finlayson G
Improvement of Colorization Realism via the Structure Tensor
  • DOI:
    10.1142/s0219467811004214
  • 发表时间:
    2011-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. S. Drew;G. Finlayson
  • 通讯作者:
    M. S. Drew;G. Finlayson
General Lp Constrained Approach for Colour Constancy
颜色恒定性的通用 Lp 约束方法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Finlayson GD
  • 通讯作者:
    Finlayson GD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Finlayson其他文献

How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis.
活动监测器估算能量消耗的效果如何?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. O’Driscoll;J. Turicchi;K. Beaulieu;Sarah Scott;J. Matu;K. Deighton;Graham Finlayson;R. J. Stubbs
  • 通讯作者:
    R. J. Stubbs
Effects of Moderate- and High-Intensity Acute Aerobic Exercise on Food Reward
中强度和高强度急性有氧运动对食物奖励的影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zhou;Xiawen Li;Xinhong Jin;Jianing Liu;Graham Finlayson
  • 通讯作者:
    Graham Finlayson
The impact of 16-h heat exposure on appetite and food reward in adults
  • DOI:
    10.1016/j.appet.2022.106144
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keyne Charlot;Juliette Millet;Florane Pasquier;Pauline Oustric;Graham Finlayson;Pascal Van Beers;Jonathan Monin;Fabien Sauvet;Pierre-Emmanuel Tardo-Dino;Alexandra Malgoyre; Investigators group
  • 通讯作者:
    Investigators group
Does altering food texture influence appetite and the subsequent food intake?
  • DOI:
    10.1016/j.appet.2022.106241
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ecaterina Stribițcaia;John Blundell;Graham Finlayson;Catherine Gibbons;Joanne Sier;Christine Boesch;Anwesha Sarkar
  • 通讯作者:
    Anwesha Sarkar
Homeostatic and neurocognitive control of energy intake in response to exercise in pediatric obesity: a psychobiological framework
儿童肥胖运动对能量摄入的稳态和神经认知控制:心理生物学框架
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    David Thivel;Graham Finlayson;J. E. Blundell
  • 通讯作者:
    J. E. Blundell

Graham Finlayson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Finlayson', 18)}}的其他基金

Future Colour Imaging
未来彩色成像
  • 批准号:
    EP/S028730/1
  • 财政年份:
    2019
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Fellowship
A Spatio-chromatic colour appearance model for retargeting high dynamic range image appearance across viewing conditions
空间彩色颜色外观模型,用于在观看条件下重新定位高动态范围图像外观
  • 批准号:
    EP/P007910/1
  • 财政年份:
    2017
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant
Colour space homography
色彩空间单应性
  • 批准号:
    EP/M001768/1
  • 财政年份:
    2015
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant
Rank based spectral estimation
基于等级的谱估计
  • 批准号:
    EP/J005223/1
  • 财政年份:
    2012
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant
SpectralEdge Image Visualisation
SpectralEdge 图像可视化
  • 批准号:
    EP/I028455/1
  • 财政年份:
    2010
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant
Colour to grey scale and related transforms
颜色到灰度及相关转换
  • 批准号:
    EP/E012248/1
  • 财政年份:
    2006
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant

相似海外基金

Early Colour Photography and its Contexts in Britain, 1890 to 1935
英国早期彩色摄影及其背景,1890 年至 1935 年
  • 批准号:
    2787578
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Studentship
"Where are the Women of Colour?"
“有色人种女性在哪里?”
  • 批准号:
    2886785
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Studentship
The Digitization and Colour Management of Rare Books on Colour Theory
色彩理论善本的数字化与色彩管理
  • 批准号:
    23K11775
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generative AI Storytelling for Moodboards & Colour Palettes
情绪板的生成式 AI 讲故事
  • 批准号:
    10077651
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Collaborative R&D
Unique Scaled Manufacture - Combining generative ai & colour 3D printing to create 1/1 unique products
独特的规模化制造——结合生成式人工智能
  • 批准号:
    10068011
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Collaborative R&D
Dynamic Colour X-ray Computed Tomography Imaging
动态彩色 X 射线计算机断层扫描成像
  • 批准号:
    BB/X004791/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant
ECG-X: Making ECGs explainable with colour to support early detection of life-threatening heart conditions
ECG-X:使心电图能够用颜色进行解释,以支持早期发现危及生命的心脏病
  • 批准号:
    EP/X02945X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant
AMFaces: Advanced Additive Manufacturing of User-Focused Facial Prostheses with Real-Life Colour Appearance
AMFaces:以用户为中心的面部假体的先进增材制造,具有真实的色彩外观
  • 批准号:
    EP/W033968/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Research Grant
Keeping Fashion In USE Through Colour
通过色彩保持时尚潮流
  • 批准号:
    10063186
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Collaborative R&D
Design of dyestuffs for difficult-to-dye textiles using chemoinformatics methods and prediction of their colour fastness
利用化学信息学方法设计难染纺织品染料并预测其色牢度
  • 批准号:
    23K01993
  • 财政年份:
    2023
  • 资助金额:
    $ 82.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了