ECG-X: Making ECGs explainable with colour to support early detection of life-threatening heart conditions
ECG-X:使心电图能够用颜色进行解释,以支持早期发现危及生命的心脏病
基本信息
- 批准号:EP/X02945X/1
- 负责人:
- 金额:$ 74.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
"In a busy hospital, a junior A&E doctor is learning to interpret ECGs. Where once she would have been counting tiny squares and trying to manually determine the beginning and end of waves using trigonometry - for example drawing tangents - on a paper printout, instead she is exploring the data on an iPad, changing the axes and orientation of the ECG, applying colour to the area under the curve and zooming in to understand details of the signal. The visualisation tool she uses to understand the data also supports her in another way: providing an automated estimation of the likelihood of the conditions she is investigating, explaining in natural language how it has come to its judgement. Because the automated interpretation uses 'cognitive fit' - where the human and the machine share the same representation of the data - it is intuitively understandable, and easy to check and explore. In this case, the fit is provided by the visual presentation of the ECG data. The techniques that support human interpretation, which combine pre-attentive processing to highlight anomalies in the signal with clinical knowledge to ensure reliability and accuracy, are also used as the basis for the machine interpretation.""A patient has started taking a new medication for cancer treatment. He hasn't noticed it causing any side effects, but his smart watch has alerted him that the electrical activity of his heart may have changed, and advises him to consult a clinician urgently. He shows the data to his doctor in an emergency consultation, and has his medication changed. His heart activity soon returns to normal."The scenarios above show the transformation our research aims to achieve - moving from difficult manual interpretation of ECGs by experts, to self-monitoring at home to detect conditions that may lead to sudden cardiac death.The Electrocardiogram (ECG) is a graphical representation of the heart's electrical activity that is widely used in clinical practice for detecting cardiac pathologies. ECG interpretation is known to be complex, challenging both humans and machines. This research will develop a suite of visualisation techniques for interrogating ECG data, combining principles of visual perception with clinical knowledge to create decision support tools where humans and machines share the same representation of the data. The research will have two strands:In the first, visualisation techniques will be co-created with clinicians to develop reliable tools that will be trusted in clinical practice, and underpinning theory that can be used as a foundation for manipulating ECG data to assist interpretation, and support automated interpretation algorithms.In the second, selected forms of data presentation for specific conditions will be trialled and further developed with members of the public, to determine whether the techniques could potentially be used by lay people for monitoring their own cardiac health. Our long-term vision is to engineer clinically reliable and explainable human-like AI that will empower patients or their caregivers to intuitively self-monitor their ECGs for potentially life-threatening cardiac conditions outside the clinical setting. This vision ultimately aims to promote primary and secondary prevention of sudden cardiac death - a catastrophic event accounting for 50% of cardiovascular mortality, causing an estimated 300,000 deaths in the US and 60,000 deaths in the UK annually. Electrical problems with the heart leading to sudden cardiac death are often detectable only on an ECG, and the early signs of ischaemic heart disease can be detected on an ECG before other major symptoms occur. Improving ECG interpretation is thus essential for the earlier detection of potentially lethal heart conditions. Faster diagnosis and the ability to self-monitor will particularly benefit women, who often experience a delay in treatment due to different symptom presentation to men.
“在一家忙碌的医院里,一位初级急症室医生正在学习解读心电图。以前她会数小方块,并试图使用三角法手动确定波的开始和结束-例如在纸上画切线-而不是在iPad上探索数据,改变ECG的轴和方向,将颜色应用于曲线下的区域并放大以了解信号的细节。她用来理解数据的可视化工具也以另一种方式支持她:提供她正在调查的条件的可能性的自动估计,用自然语言解释它是如何得出判断的。由于自动化解释使用“认知拟合”-人类和机器共享相同的数据表示-它直观易懂,易于检查和探索。在这种情况下,通过ECG数据的视觉呈现来提供拟合。支持人工判读的技术也被用作机器判读的基础,该技术将联合收割机预先注意处理与临床知识相结合,以突出信号中的异常,从而确保可靠性和准确性。”“一个病人开始服用一种治疗癌症的新药。他没有注意到它会引起任何副作用,但他的智能手表提醒他,他的心脏的电活动可能已经改变,并建议他紧急咨询临床医生。他在一次紧急会诊中向医生展示了这些数据,并改变了他的药物。他的心脏活动很快恢复正常。“上述情况显示了我们的研究旨在实现的转变-从专家难以手动解释ECG,到在家自我监测以检测可能导致心脏猝死的条件。心电图(ECG)是心脏电活动的图形表示,广泛用于临床实践中检测心脏病理。众所周知,ECG解释是复杂的,对人类和机器都具有挑战性。这项研究将开发一套可视化技术,用于询问ECG数据,将视觉感知原理与临床知识相结合,以创建决策支持工具,其中人类和机器共享相同的数据表示。该研究将有两个方面:第一,将与临床医生共同创建可视化技术,以开发在临床实践中值得信赖的可靠工具,并支持可用作操纵心电图数据的基础的理论。辅助解释,并支持自动解释算法。第二,将与公众一起试验并进一步开发特定条件的选定数据呈现形式,以确定这些技术是否有可能被外行人用来监测自己的心脏健康。我们的长期愿景是设计出临床上可靠且可解释的类人AI,使患者或其护理人员能够直观地自我监测心电图,以了解临床环境之外可能危及生命的心脏状况。这一愿景的最终目标是促进心脏性猝死的一级和二级预防--心脏性猝死是一种灾难性事件,占心血管死亡率的50%,每年在美国造成约30万人死亡,在英国造成6万人死亡。导致心脏性猝死的心脏电气问题通常只能在心电图上检测到,缺血性心脏病的早期症状可以在其他主要症状发生之前在心电图上检测到。因此,改善心电图解释对于早期检测潜在的致命心脏病至关重要。更快的诊断和自我监测的能力将特别有利于妇女,由于与男性不同的症状表现,她们往往会延迟治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Personalized, intuitive & visual QT-prolongation monitoring using patient-specific QTc threshold with pseudo-coloring and explainable AI
个性化、直观
- DOI:10.1016/j.jelectrocard.2023.09.012
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Alahmadi A
- 通讯作者:Alahmadi A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caroline Jay其他文献
Integration and execution of Community Land Model Urban (CLMU) in a containerized environment
在容器化环境中社区土地模型城市(CLMU)的集成与执行
- DOI:
10.1016/j.envsoft.2025.106391 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.600
- 作者:
Junjie Yu;Yuan Sun;Sarah Lindley;Caroline Jay;David O. Topping;Keith W. Oleson;Zhonghua Zheng - 通讯作者:
Zhonghua Zheng
<strong>Session IX:</strong>
- DOI:
10.1016/j.jelectrocard.2023.03.046 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Alaa Alahmadi;Alan Davies;Markel Vigo;Caroline Jay - 通讯作者:
Caroline Jay
A FAIR-Decide framework for pharmaceutical R&D: FAIR data cost–benefit assessment
一个用于制药研发的 FAIR 决策框架:FAIR 数据成本效益评估
- DOI:
10.1016/j.drudis.2023.103510 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:7.500
- 作者:
Ebtisam Alharbi;Rigina Skeva;Nick Juty;Caroline Jay;Carole Goble - 通讯作者:
Carole Goble
Effects of Point Size and Opacity Adjustments in Scatterplots
散点图中点大小和不透明度调整的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gabriel Strain;Andrew J. Stewart;Paul A. Warren;Caroline Jay - 通讯作者:
Caroline Jay
A Qualitative Study of Human Theorizing about Robot Bodily Behavior
人类关于机器人身体行为的理论定性研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Martina Ruocco;Caroline Jay;B. Parsia - 通讯作者:
B. Parsia
Caroline Jay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caroline Jay', 18)}}的其他基金
Socio-technical resilience in software development (STRIDE)
软件开发中的社会技术弹性 (STRIDE)
- 批准号:
EP/T017198/1 - 财政年份:2020
- 资助金额:
$ 74.75万 - 项目类别:
Research Grant
IDInteraction: Capturing Indicative Usage Models in Software for Implicit Device Interaction
IDInteraction:捕获软件中用于隐式设备交互的指示性使用模型
- 批准号:
EP/M017133/1 - 财政年份:2015
- 资助金额:
$ 74.75万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
SoundDecisions - Musical Listening, Decision Making, And Equitable Development In The Mekong Delta
SoundDecisions - 湄公河三角洲的音乐聆听、决策和公平发展
- 批准号:
EP/Z000424/1 - 财政年份:2025
- 资助金额:
$ 74.75万 - 项目类别:
Research Grant
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:
EP/Z000246/1 - 财政年份:2025
- 资助金额:
$ 74.75万 - 项目类别:
Research Grant
What is the role of striatal dopamine in value-based decision-making?
纹状体多巴胺在基于价值的决策中发挥什么作用?
- 批准号:
DP240103246 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Discovery Projects
Cultivating digital music making in regional Australia
培育澳大利亚乡村地区的数字音乐制作
- 批准号:
DP240100680 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Discovery Projects
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Research Grant
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Research Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343727 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Continuing Grant
The Making of a University Hub for Basic Cultural Anthropological Research Related to Cultural and Biodiversity Conservation
建立与文化和生物多样性保护相关的基础文化人类学研究大学中心
- 批准号:
2309069 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Trust-Building Communication and Climate Decision Making
博士论文研究:建立信任的沟通与气候决策
- 批准号:
2343706 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Standard Grant
World Crime Fiction: Making Sense of a Global Genre
世界犯罪小说:理解全球类型
- 批准号:
DP240102250 - 财政年份:2024
- 资助金额:
$ 74.75万 - 项目类别:
Discovery Projects