Quantum spintronics using donors in isotopically engineered silicon

使用同位素工程硅中的供体进行量子自旋电子学

基本信息

  • 批准号:
    EP/H025952/2
  • 负责人:
  • 金额:
    $ 1.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

The exquisite control over materials fabrication and spin control techniques has reached a maturity where spintronics can go beyond purely classical effects and begin to fully exploit the unique quantum properties of superposition and entanglement. Potential applications arising from quantum spintronics range from quantum information processors, including the transmission of quantum information via itinerant electron spins, single microwave photon storage within spin ensembles, and new generation of sensors exploiting entanglement to yield fundamentally enhanced precision. Key ingredients for quantum spintronics include the preservation of spin coherence and the generation of high-purity entanglement. Through this collaborative research project, we propose to address both of these challenges using both the electron and nuclear spin of donors in isotopically engineered silicon. Our preliminary experiments show that such materials offer the greatest potential for high-purity entanglement and long coherence times, and their potential integration within conventional electronics is a further advantage.Through our initial collaboration, we have already demonstrated 'psuedo-entanglement' between the electron and nuclear spin associated with a P-donor in silicon at X-band (0.3 T) and 6K. We have used the fidelities which we achieved in those experiments to calculate thresholds for generating pure entanglement by this technique: for example moving to higher magnetic fields (>3.5T) and lower temperatures (<4K). We possess the major instrumentation to meet these requirements, and will demonstrate the controlled generation of pure spin entanglement within silicon as part of this project. We will then develop methods for preserving entanglement and understand the effect of spin transport.The isotopic purification of silicon to 28Si yields dramatic improvements in the donor electron spin coherence to tens of milliseconds. However, the nuclear spin is a powerful resource into which the coherent electron spin state may be temporarily stored and retrieved. We have demonstrated the use of the nuclear spin as a quantum memory in this way, yielding coherence times up to several seconds. We will understand the mechanisms for spin decoherence and, using materials refinement and active techniques such as dynamic decoupling and error-correction, we will push the limits of the longest spin coherences times in the solid state. The spin ensembles which we will be studying are capable of storing multiple bits of information in distributed states, analogous to holographic information storage. We shall build on our initial work, in which we stored and retrieved 100 coherent weak microwave excitations within an ensemble, to establish multimode quantum memories working i) at low applied magnetic fields ii) down to the single photon level iii) capable of storing coherent quantum states for several seconds.Throughout this project we will be performing an iterative development of instrumentation and materials: longer coherence times enabled by the isotopically engineered materials will push us to the limits of our instrumentation, and by improving the instrumentation we can then extract and understand intrinsic properties of the materials so that they may be further enhanced.At the end of the project we shall have established donor spins in isotopically engineered silicon as the forerunner material for quantum spintronics and demonstrated the essential components for a quantum spintronics device.
对材料制造和自旋控制技术的精细控制已经达到成熟,自旋电子学可以超越纯粹的经典效应,并开始充分利用叠加和纠缠的独特量子特性。量子自旋电子学的潜在应用包括量子信息处理器,包括通过巡回电子自旋传输量子信息,自旋系综内的单微波光子存储,以及利用纠缠产生根本性增强精度的新一代传感器。量子自旋电子学的关键要素包括保持自旋相干性和产生高纯度纠缠。通过这个合作研究项目,我们建议使用同位素工程硅中供体的电子和核自旋来解决这两个挑战。我们的初步实验表明,这种材料提供了最大的潜力,高纯度的纠缠和长的相干时间,和他们的潜在集成在传统的电子学是一个进一步的优势。通过我们的初步合作,我们已经证明了电子和核自旋之间的“伪纠缠”与硅中的P-施主在X波段(0.3 T)和6 K。我们已经使用我们在这些实验中获得的纠缠度来计算通过这种技术产生纯纠缠的阈值:例如移动到更高的磁场(>3.5T)和更低的温度(<4K)。我们拥有满足这些要求的主要仪器,并将作为该项目的一部分演示硅内纯自旋纠缠的受控产生。然后我们将开发保持纠缠的方法并了解自旋输运的影响。将硅同位素纯化为28 Si会使施主电子的自旋相干性显著提高到数十毫秒。然而,核自旋是一个强大的资源,相干电子自旋状态可以暂时存储和检索。我们已经证明了以这种方式使用核自旋作为量子存储器,产生的相干时间长达几秒钟。我们将了解自旋退相干的机制,并使用材料改进和动态解耦和纠错等主动技术,我们将推动固态中最长自旋相干时间的极限。我们将要研究的自旋系综能够以分布式状态存储多比特信息,类似于全息信息存储。我们将在我们最初的工作基础上,在一个系综中存储和检索100个相干弱微波激发,建立多模量子存储器,i)在低应用磁场下工作ii)低至单光子水平iii)能够存储相干量子态几秒钟。在整个项目中,我们将进行仪器和材料的迭代开发:由同位素工程材料实现的更长的相干时间将把我们推向仪器的极限,通过改进仪器,我们可以提取和理解材料的固有特性,以便进一步增强它们。在项目结束时,我们将在同位素工程硅中建立施主自旋,作为量子自旋电子学,并展示了量子自旋电子学器件的基本组成部分。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast entangling gates between nuclear spins using photoexcited triplet states
  • DOI:
    10.1038/nphys2353
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Filidou, Vasileia;Simmons, Stephanie;Morton, John J. L.
  • 通讯作者:
    Morton, John J. L.
Coherent storage of photoexcited triplet states using ^<29>Si nuclear spins in silicon
利用硅中^<29>Si核自旋光激发三重态的相干存储
  • DOI:
    10.1103/physrevlett.108.097601
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Akhtar;V. Filidou;T. Sekiguchi;E. Kawakami;T. Itahashi;L. Vlasenko;J. J. L. Morton;and K. M. Itoh
  • 通讯作者:
    and K. M. Itoh
A Silicon Surface Code Architecture Resilient Against Leakage Errors
  • DOI:
    10.22331/q-2019-12-09-212
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Z. Cai;M. Fogarty;S. Schaal;S. Patomäki;S. Benjamin;J. Morton
  • 通讯作者:
    Z. Cai;M. Fogarty;S. Schaal;S. Patomäki;S. Benjamin;J. Morton
Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon
硅中光激发三重态自旋系统的拉比振荡和电子自旋回波包络调制
  • DOI:
    10.1103/physrevb.86.115206
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Akhtar W
  • 通讯作者:
    Akhtar W
Magnetic Resonance with Squeezed Microwaves
  • DOI:
    10.1103/physrevx.7.041011
  • 发表时间:
    2017-10-17
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Bienfait, A.;Campagne-Ibarcq, P.;Bertet, P.
  • 通讯作者:
    Bertet, P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Morton其他文献

Strategies for the Storage of Ancylostoma caninum Third-Stage Larvae
犬钩虫第三期幼虫的储存策略
Experiments with the stimulus suffix effect.
刺激后缀效应实验。
A124 - Pre-operative weight loss: is waiting longer before bariatric surgery more effective?
  • DOI:
    10.1016/j.soard.2017.09.031
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Victor Eng;Habib Khoury;John Morton;Dan Azagury
  • 通讯作者:
    Dan Azagury
A5293 - Do Wearable Activity Trackers Enhance the Outcomes of Bariatric Surgery?
  • DOI:
    10.1016/j.soard.2017.09.435
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Habib Khoury;John Morton;Thomas Boillat;Sharon Wulfovich;Katarzyna Wac;Homero Rivas
  • 通讯作者:
    Homero Rivas
P71: Is there consensus for postoperative practice patterns? A survey of ASMBS surgeons
  • DOI:
    10.1016/j.soard.2008.03.132
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sharla Owens;John Downey;Tara Ramachandra;Joseph Peraza;Gavitt Woodard;John Morton
  • 通讯作者:
    John Morton

John Morton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Morton', 18)}}的其他基金

Quantum technology capital: QUES2T (Quantum Engineering of Solid-state Technologies)
量子科技资本:QUES2T(固态技术量子工程)
  • 批准号:
    EP/N015118/1
  • 财政年份:
    2016
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Research Grant
Entangling dopant nuclear spins using double quantum dots
使用双量子点纠缠掺杂剂核自旋
  • 批准号:
    EP/K025945/1
  • 财政年份:
    2013
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Research Grant
Materials World Network: Spin entanglement using transient electrons in C and Si-based materials
材料世界网络:利用碳和硅基材料中的瞬态电子进行自旋纠缠
  • 批准号:
    EP/I035536/2
  • 财政年份:
    2012
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Research Grant
Materials World Network: Spin entanglement using transient electrons in C and Si-based materials
材料世界网络:利用碳和硅基材料中的瞬态电子进行自旋纠缠
  • 批准号:
    EP/I035536/1
  • 财政年份:
    2011
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Research Grant
Quantum spintronics using donors in isotopically engineered silicon
使用同位素工程硅中的供体进行量子自旋电子学
  • 批准号:
    EP/H025952/1
  • 财政年份:
    2010
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Research Grant
Enhancement of Analytic Thinking through Advanced Economic Education in Secondary Schools
通过中学高级经济教育增强分析思维
  • 批准号:
    9155187
  • 财政年份:
    1992
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant

相似海外基金

FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics
FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算
  • 批准号:
    2329111
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Continuing Grant
Semiconductor-based room temperature optical spintronics using novel spin-optical devices
使用新型自旋光学器件的基于半导体的室温光学自旋电子学
  • 批准号:
    23H01459
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Innovative study of the spintronics using the angular momentum of nuclear spins
利用核自旋角动量进行自旋电子学的创新研究
  • 批准号:
    21H01800
  • 财政年份:
    2021
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
STTR Phase I: Room Temperature Implementation of Quantum Algorithms using Spintronics Technology
STTR 第一阶段:使用自旋电子技术在室温下实现量子算法
  • 批准号:
    2035962
  • 财政年份:
    2021
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Improvement of radiation efficiency of the wideband terahertz-emitter using the spintronics device
利用自旋电子器件提高宽带太赫兹发射器的辐射效率
  • 批准号:
    20K04599
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and application of new spintronics functionalities by using ionic conductor
利用离子导体的新自旋电子学功能的开发和应用
  • 批准号:
    19H02586
  • 财政年份:
    2019
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of measuring techniques for electric and magnetic states at buried interface in spintronics materials using hard X-ray photoelectron spectroscopy
使用硬X射线光电子能谱测量自旋电子材料埋入界面的电和磁状态的技术的发展
  • 批准号:
    19K12655
  • 财政年份:
    2019
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Ultimate Low-Noise Magnetic Field Sensors Using Novel Sensing Layer in Magnetic Tunnel Junctions for Sensing-Driven Society
在磁隧道结中使用新型传感层开发终极低噪声磁场传感器,以实现传感驱动的社会
  • 批准号:
    19K15429
  • 财政年份:
    2019
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploration of rare earth oxide spintronics using room temperature ferromagnetic oxide semiconductor with large magnetization
大磁化强度室温铁磁氧化物半导体稀土氧化物自旋电子学探索
  • 批准号:
    18H03872
  • 财政年份:
    2018
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
SPX: Scalable In-Memory Processing Using Spintronics
SPX:使用自旋电子学的可扩展内存处理
  • 批准号:
    1725420
  • 财政年份:
    2017
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了