FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics

FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算

基本信息

  • 批准号:
    2329111
  • 负责人:
  • 金额:
    $ 192.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical DescriptionThe energy consumption of computing is a significant global challenge, as the demand for computing explodes. If current trends persist, computing will soon become the dominant energy consumer. Limits to energy production and storage will limit availability of critical applications and hinder development of new technologies. Spintronics, which uses an electron’s spin as well as its charge, offer a new paradigm for computing that can meet this challenge. This FuSe project aims to enable a new generation of energy-efficient computing devices by integrating materials research, device physics and ultimately circuit design and architectures. These devices will be based on materials with electric and magnetic properties that can be controlled by external fields, called multiferroics. The team is committed to educating the next generation semiconductor workforce. A diverse group of graduate and undergraduate students will be trained in interdisciplinary research, with a focus on those from underrepresented groups in STEM. The PIs will also develop educational materials and participate in K-12 outreach events to inspire a broad audience.Technical DescriptionThis project explores electrically driven and detected spin transport in a voltage-switchable multiferroic insulator as the foundation for ultra-low-energy logic-in-memory computing. By exploiting the correlation and non-volatility in multiferroic materials, the team aims to greatly reduce the operating voltage of computers substantially below what is achievable by today's complementary metal oxide semiconductor (CMOS) technology and enable transformative logic-in-memory computing architectures with significantly alleviated communication costs between memory and logic. The project seeks to obtain fundamental understanding and transformative innovations by probing multiferroic materials and devices at unprecedented dimension, time, and energy scales. The team aims to address engineering challenges by integrating bottom-up research on materials synthesis, fabrication, and junction physics, and top-down from systems and circuit requirements. The project involves significant efforts to develop advanced characterization techniques including optical spectroscopy, electron microscopy, and magnetotransport for multiferroic materials and heterostructures. In addition, the project develops a circuit simulation framework and reference circuit designs, to realistically evaluate multiferroic spintronics at the system level and facilitate top-down research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述随着对计算的需求爆炸式增长,计算的能源消耗是一个重大的全球挑战。如果目前的趋势持续下去,计算将很快成为主要的能源消费者。对能源生产和储存的限制将限制关键应用的可用性,并阻碍新技术的发展。自旋电子学利用了电子的自旋和电荷,提供了一种新的计算范式,可以应对这一挑战。该FuSe项目旨在通过整合材料研究,设备物理以及最终的电路设计和架构来实现新一代节能计算设备。这些设备将基于具有电和磁特性的材料,这些材料可以通过外部场来控制,称为多铁性。该团队致力于教育下一代半导体员工。一个多元化的研究生和本科生群体将接受跨学科研究的培训,重点是那些来自STEM代表性不足的群体。PI还将开发教育材料,并参与K-12外展活动,以激励广大观众。技术描述该项目探讨了电压可切换多铁性绝缘体中的电驱动和检测自旋输运,作为超低能量逻辑存储器计算的基础。通过利用多铁性材料中的相关性和非易失性,该团队的目标是大大降低计算机的工作电压,使其大大低于当今互补金属氧化物半导体(CMOS)技术所能实现的电压,并实现变革性的存储器中逻辑计算架构,大大降低存储器和逻辑之间的通信成本。该项目旨在通过在前所未有的维度,时间和能量尺度上探索多铁性材料和设备来获得基本的理解和变革性创新。该团队旨在通过整合自下而上的材料合成,制造和结物理研究以及自上而下的系统和电路要求来应对工程挑战。该项目涉及开发先进的表征技术,包括光学光谱学,电子显微镜和多铁性材料和异质结构的磁输运的重大努力。此外,该项目还开发了电路仿真框架和参考电路设计,以在系统层面真实地评估多铁性自旋电子学并促进自上而下的研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力评估被认为值得支持优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaiyuan Yang其他文献

CAMA: Energy and Memory Efficient Automata Processing in Content-Addressable Memories
CAMA:内容可寻址存储器中的能源和存储器高效自动机处理
Phosphorus-carbon bond cleavage and tetrahedrane cluster activation in the reaction between bis(diphenylphosphino)maleic anhydride (BMA) and PhCCo3(CO)9. Syntheses, kinetic studies, and x-ray diffraction structures of PhCCo3(CO)7(bma) and [cyclic] Co3(CO)6(.mu.2-.eta.2,.eta.1-C(Ph)C:C(PPh2)C(O)OC(O)
双(二苯基膦)马来酸酐 (BMA) 和 PhCCo3(CO)9 反应中磷碳键断裂和四面体簇活化。
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaiyuan Yang;Janna M. Smith;S. Bott;M. Richmond
  • 通讯作者:
    M. Richmond
Reaction of 1,2-bis(diphenylphosphino)cyclobutenedione (bpcbd) with fac-BrRe(CO)3(THF)2: X-ray diffraction structure of the dimeric complex [BrRe(CO)3]2(bpcbd) ⋅ CH2Cl2
  • DOI:
    10.1023/b:jocc.0000014699.65697.98
  • 发表时间:
    2004-02-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Simon G. Bott;Kaiyuan Yang;Michael G. Richmond
  • 通讯作者:
    Michael G. Richmond
X-ray diffraction structure of Re2(CO)8[(Z)-Ph2PCH=CHPPh2]. Proof for diphosphine ligation across the Re–Re bond
  • DOI:
    10.1023/a:1015663115531
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Simon G. Bott;Kaiyuan Yang;Michael G. Richmond
  • 通讯作者:
    Michael G. Richmond
Synthesis, redox properties, and X-ray diffraction structure of the platinum catecholate complex Pt(1,5-COD)(1,2-O2C6H4)
  • DOI:
    10.1007/bf01677097
  • 发表时间:
    1996-05-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Ming-Jaw Don;Kaiyuan Yang;Simon G. Bott;Michael G. Richmond
  • 通讯作者:
    Michael G. Richmond

Kaiyuan Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaiyuan Yang', 18)}}的其他基金

SHF: Medium: Efficient and Scalable Pattern Matching via Hardware-Software Co-Design
SHF:中:通过软硬件协同设计实现高效且可扩展的模式匹配
  • 批准号:
    2313062
  • 财政年份:
    2023
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Continuing Grant
CAREER: Reliable and Secure Minimally Invasive Bioelectronic Implants through Contextual Awareness
职业:通过情境意识实现可靠、安全的微创生物电子植入
  • 批准号:
    2146476
  • 财政年份:
    2022
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Continuing Grant
EAGER: SARE: Physically disordered nanostructures for lightweight and secure authentication on CMOS platform
EAGER:SARE:物理无序纳米结构,可在 CMOS 平台上实现轻量级安全身份验证
  • 批准号:
    2028997
  • 财政年份:
    2020
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Standard Grant

相似国自然基金

磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Standard Grant
Ultra-low noise magnetic environments
超低噪声磁场环境
  • 批准号:
    ST/Y509978/1
  • 财政年份:
    2024
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Research Grant
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
  • 批准号:
    10089379
  • 财政年份:
    2024
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Collaborative R&D
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Continuing Grant
Implementing VVC codec in WebRTC video conferencing and Ultra Low Latency CDN for reduced network footprint
在 WebRTC 视频会议和超低延迟 CDN 中实施 VVC 编解码器,以减少网络占用
  • 批准号:
    10114427
  • 财政年份:
    2024
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Collaborative R&D
Novel alkaline electrolyser with optimized micro-patterned electrodes for efficient ultra-low cost hydrogen
新型碱性电解槽具有优化的微图案电极,可实现高效、超低成本的氢气
  • 批准号:
    10075115
  • 财政年份:
    2023
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Grant for R&D
Development of an ultra low emission catalytic gasification wood stove
超低排放催化气化柴火炉的研制
  • 批准号:
    10080888
  • 财政年份:
    2023
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Small Business Research Initiative
Study of mitochondrial activation mechanism by ultra-low frequency magnetic field and development of minimally invasive therapy
超低频磁场线粒体激活机制研究及微创治疗进展
  • 批准号:
    23K06412
  • 财政年份:
    2023
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Tierras Observatory: An Ultra-precise Time-series Photometer to Characterize Nearby Low-mass Stars and Their Terrestrial Exoplanets
Tierras 天文台:超精确时间序列光度计,用于表征附近的低质量恒星及其类地系外行星
  • 批准号:
    2308043
  • 财政年份:
    2023
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Standard Grant
FuSe-TG: Ultra-low-power and Robust Autonomy of Edge Robotics with 2D Semiconductors
FuSe-TG:采用 2D 半导体的边缘机器人的超低功耗和鲁棒自主性
  • 批准号:
    2235207
  • 财政年份:
    2023
  • 资助金额:
    $ 192.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了