INVESTIGATIONS INTO ACTIVE BIOLOGICAL CELLULAR SENSOR ARRAYS AS INSPIRATON FOR ENGINEERED NONLINEAR SENSORS

对活性生物细胞传感器阵列的研究作为工程非线性传感器的灵感

基本信息

  • 批准号:
    EP/H02848X/1
  • 负责人:
  • 金额:
    $ 30.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

For animals, being able to listen to sounds in the environment opens up a new world; a new way to sense their surroundings. Many animals have evolved to use sound for detecting prey and predators, finding and courting with potential mates, 'seeing' the world with echolocation, and reaching a level of complexity to enable speech. In many cases, having an acute auditory sense can really be a matter of life and death. Unsurprisingly, the importance of detecting the sounds emitted by friends and foe has driven the evolution of remarkable acoustic sensors. When we can hear a pin drop, we do so because that ability, a long time ago, could have saved our lives. This level of sensitivity, in humans, mammals, and insects among others has reached a point where some animals can detect sound that is in some respects only just distinguishable from noise - from the thermal buffeting to which every sensor is ultimately restricted. In order to achieve this, animals have evolved many tricks to enhance their auditory capability. Mammals and insects use sensors full of molecular motors, consuming energy to provide amplification of weak sounds that enter their ears. This feedback also gives a sensor the ability to selectively filter signals; to change the range of frequencies to which they are sensitive. In this regard, a biological acoustic sensor can be adapted perfectly to the animal's needs: to lock into the sound from a desirable mate or to form an image of their world when eyes are not enough. Insects in particular employ a wide range of exquisite sensors. For example, the mosquito uses a brush-like antenna projected away from its head into the air, which oscillates when sound is present. At the base of this antenna is some 16000 neurones (that can both sense and generate force), a truly remarkable number. Why the need for so many? Strangely enough, with so many neurones sensing and feeding back a force to the antenna, some very complex dynamic behaviour can occur. Sound can be amplified, frequencies accepted or rejected, and signals can be 'locked' to zoom in on the source.This project is inspired by these sensors. Can we learn from the way insects like the mosquito process sound? Can we harness their ability to make new sensors and actuators that can hear like they do? Over the course of this fellowship, we will investigate the way in which bundles of cells operate to achieve their exquisite sensitivity. What happens when a sensor is composed of relatively simple components, but behaves more than the sum of its parts? We will image the activity of neurones in insects and develop hypotheses on how they work collectively. We aim to proceed by searching for ways in which to implement their properties in real engineered sensors. Many transducers used industrially, and in other scientific fields, are in fact arrays of many sensors and actuators, coupled together. By knowing the mechanisms of cellular arrays in animals such as the mosquito, we will aim to achieve the level of sophistication, sensitivity and functionality of insect hearing in real systems. These bio-inspired sensors have the potential to improve the industrial use of acoustic sensors and actuators, from medical ultrasound imaging, non-destructive testing of materials, and even robot guidance.
对于动物来说,能够在环境中倾听声音开辟了一个新的世界;一种感知周围环境的新方式。许多动物已经进化到使用声音来探测猎物和捕食者,寻找和追求潜在的配偶,通过回声定位来“观察”世界,并达到了能够说话的复杂程度。在许多情况下,拥有敏锐的听觉可能真的是生死攸关的问题。不出所料,探测朋友和敌人发出的声音的重要性推动了非凡的声学传感器的发展。当我们听到一根针掉在地上时,我们会这样做,因为很久以前,这种能力可以拯救我们的生命。在人类、哺乳动物和昆虫等动物身上,这种敏感度已经达到了这样的程度,一些动物可以检测到在某些方面只能与噪音区分的声音--从每个传感器最终受限于的热抖动。为了实现这一点,动物进化了许多技巧来增强它们的听觉能力。哺乳动物和昆虫使用充满分子马达的传感器,消耗能量来放大进入它们耳朵的微弱声音。这种反馈还使传感器能够有选择地对信号进行滤波;改变信号敏感的频率范围。在这方面,生物声学传感器可以完美地适应动物的需求:锁定来自理想配偶的声音,或者在眼睛不够的情况下形成它们世界的图像。尤其是昆虫,使用了一系列精致的传感器。例如,蚊子使用一个刷子状的天线,从它的头部投射到空中,当声音出现时,它会振荡。在这个天线的底部有大约16000个神经元(既能感知又能产生力量),这是一个非常了不起的数字。为什么需要这么多?奇怪的是,由于有如此多的神经元感知并反馈给天线一个力,一些非常复杂的动态行为可能会发生。声音可以被放大,频率可以被接受或拒绝,信号可以被“锁定”以放大来源。这个项目的灵感来自于这些传感器。我们能从蚊子这样的昆虫发出声音的方式中学习吗?我们能否利用他们的能力,制造出听起来像他们一样的新型传感器和执行器?在这一研究过程中,我们将研究细胞束的运作方式,以实现其精致的敏感性。当传感器由相对简单的组件组成,但其性能超过其各部分之和时,会发生什么情况?我们将描绘昆虫中神经元的活动,并提出关于它们如何共同工作的假说。我们的目标是通过寻找在真正的工程传感器中实现它们的特性的方法来进行。工业上和其他科学领域中使用的许多换能器实际上是由许多传感器和执行器组成的阵列,这些传感器和执行器耦合在一起。通过了解蚊子等动物体内细胞阵列的机制,我们将致力于在真实系统中达到昆虫听觉的复杂程度、灵敏度和功能。这些受生物启发的传感器有可能改善声传感器和执行器的工业应用,从医学超声成像、材料的无损检测,甚至机器人导航。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Listening to the environment: hearing differences from an epigenetic effect in solitarious and gregarious locusts.
  • DOI:
    10.1098/rspb.2014.1693
  • 发表时间:
    2014-11-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gordon SD;Jackson JC;Rogers SM;Windmill JF
  • 通讯作者:
    Windmill JF
Simple Ears Inspire Frequency Agility in an Engineered Acoustic Sensor System
简单的耳朵激发工程声学传感器系统的频率敏捷性
  • DOI:
    10.1109/jsen.2017.2699697
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Guerreiro J
  • 通讯作者:
    Guerreiro J
Extremely high frequency sensitivity in a 'simple' ear.
“简单”的耳朵具有极高的频率灵敏度。
  • DOI:
    10.1098/rsbl.2013.0241
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Moir HM
  • 通讯作者:
    Moir HM
Conformally mapped 2D ultrasonic array structure for NDT imaging application
用于无损检测成像应用的共形映射二维超声阵列结构
  • DOI:
    10.1109/ultsym.2010.5935908
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramadas S
  • 通讯作者:
    Ramadas S
Discovery of a lipid synthesising organ in the auditory system of an insect.
  • DOI:
    10.1371/journal.pone.0051486
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lomas KF;Greenwood DR;Windmill JF;Jackson JC;Corfield J;Parsons S
  • 通讯作者:
    Parsons S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Jackson其他文献

111: Risk Factors for Progression of Kidney Disease: A Longitudinal Study in a Community Practice
  • DOI:
    10.1053/j.ajkd.2007.02.117
  • 发表时间:
    2007-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Claudine Jurkovitz;Edward Ewen;James Bowen;Joseph Jackson;William Weintraub
  • 通讯作者:
    William Weintraub
Outcomes Assessment in Cancer: Invited Paper D Industry perspective regarding outcomes research in oncology
癌症结果评估:特邀论文 D 关于肿瘤学结果研究的行业观点
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Copley;Joseph Jackson;J. Boyer;J. Cappelleri;R. Demarinis;J. Dicesare;M. Erder;J. Gagnon;L. Garrison;K. Gondek;K. Heithoff;T. Hughes;David D. Miller;M. Rothman;N. Santanello;R. Willke;B. Wong
  • 通讯作者:
    B. Wong
Health Related Quality of Life in I-PRESERVE Trial
  • DOI:
    10.1016/j.cardfail.2008.06.200
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Carson;John McMurray;Michel Komajda;Michael Zile;Agata Ptaszynska;Joseph Jackson;Robert McKelvie;Thomas Rector;Jessica Grinspan;Christof Staiger;Barry Massie
  • 通讯作者:
    Barry Massie
Randomized, double‐blind clinical evaluation of the efficacy and safety of topical eflornithine HCl 13.9% cream in the treatment of women with facial hair
外用 13.9% 依氟鸟氨酸乳膏治疗女性面部毛发的有效性和安全性的随机、双盲临床评价
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    J. Wolf;D. Shander;F. Huber;Joseph Jackson;Chen;B. Mathes;K. Schrode
  • 通讯作者:
    K. Schrode
DETECTION OF AMYLOID CARDIOMYOPATHY IN PATIENTS WITH SYSTEMIC ATTR AND AL AMYLOIDOSIS USING SPECT/CT AND PLANAR IMAGING OF A TECHNETIUM-99M-LABELED PEPTIDE - TECHNETIUM-99M (<sup>99M</sup>TC) EVUZAMITIDE
  • DOI:
    10.1016/s0735-1097(24)03359-x
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan Wall;Emily Martin;Robert Eric Heidel;Alan Stuckey;Bryan Whittle;Joseph Jackson;Angela Williams;Muddassir Mehmood;Anne Kanderian Kassira;Rebecca R. Hung;Ronald Lands;Stephen Kennel
  • 通讯作者:
    Stephen Kennel

Joseph Jackson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Jackson', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    2302703
  • 财政年份:
    2023
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Fellowship Award

相似海外基金

Creation of optically active multiferroics by chirality introduction into framework structure
通过将手性引入框架结构创建光学活性多铁性材料
  • 批准号:
    23KJ1843
  • 财政年份:
    2023
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A Deep (Learning) Dive into Solar Active Region Evolution and Flare Production
深入(学习)研究太阳活动区的演化和耀斑的产生
  • 批准号:
    2878047
  • 财政年份:
    2023
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Studentship
CAM-EV - Development of new processes to recover critical metals from multi-chemistry, end-of-life EV batteries and convert them into tailored cathode-active materials
CAM-EV - 开发新工艺,从多化学物质、报废电动汽车电池中回收关键金属,并将其转化为定制的阴极活性材料
  • 批准号:
    10048761
  • 财政年份:
    2023
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Collaborative R&D
IN-NOVA - Active reduction of noise transmitted into and from enclosures through encapsulated structures
IN-NOVA - 通过封装结构主动减少传入和传出外壳的噪音
  • 批准号:
    EP/X027767/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Research Grant
Probing into receptor-mediated trafficking and internalization functions of biologically active peptides
生物活性肽受体介导的运输和内化功能的探讨
  • 批准号:
    RGPIN-2018-06651
  • 财政年份:
    2022
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Discovery Grants Program - Individual
IN-NOVA - Active reduction of noise transmitted into and from enclosures through encapsulated structures
IN-NOVA - 通过封装结构主动减少传入和传出外壳的噪音
  • 批准号:
    EP/X027341/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Research Grant
Infrared probing into particle acceleration by magnetic turbulence associated with astrophysical jets from active galactic nuclei
红外探测与来自活动星系核的天体物理射流相关的磁湍流引起的粒子加速
  • 批准号:
    21K03635
  • 财政年份:
    2021
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transforming the Classroom into an Active Learning Environment to Improve Comprehension, Retention, and Graduation Rates
将课堂转变为积极的学习环境,以提高理解率、保留率和毕业率
  • 批准号:
    2110760
  • 财政年份:
    2021
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Continuing Grant
How does an arts organization transition into a more active and equitable climate constituent? BALTIC Centre for Contemporary Art as case study.
艺术组织如何转变为更积极、更公平的气候组成部分?
  • 批准号:
    2594404
  • 财政年份:
    2021
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Studentship
Development of active loading technologies for encapsulating highly charged molecules into liposomes
开发将高电荷分子封装到脂质体中的主动装载技术
  • 批准号:
    RGPIN-2017-03787
  • 财政年份:
    2021
  • 资助金额:
    $ 30.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了