Development and application of methods for complexity reduction, metamodelling and optimal experimental design based on global sensitivity analysis
基于全局敏感性分析的复杂性降低、元建模和优化实验设计方法的开发和应用
基本信息
- 批准号:EP/H03126X/1
- 负责人:
- 金额:$ 87.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Model based simulation of complex processes is an efficient approach to explore and study systems whose experimental analysis is costly or time-consuming. Modern mathematical models of real systems often have high complexity with hundreds of variables. Straightforward modelling using such models can be computationally costly or even intractable. Good modelling practice requires sensitivity analysis (SA) to ensure the model quality by analysing the model structure, selecting the best type of model and effectively identifying the important model parameters. Global SA is superior to other SA methods. It can be applied to any type of model for quantifying and reducing problem complexity without sacrificing accuracy and it is not dependent on a nominal point like local SA methods. We propose the development of a number of advanced model analysis and complexity reduction techniques based on global SA and efficient high dimensional Monte Carlo (MC) and Quasi MC methods. In particular, we will develop high dimensional Sobol' sequence generators with improved uniformity properties. It will allow increasing the efficiency of global SA and Quasi MC methods in general. The Sobol' method of global sensitivity indices is superior to other global SA methods. However, it has been applied only to low scale models because of the computational limitations of the existing technique. We propose a number of techniques which will improve the efficiency of the Sobol' method. We also propose a set of new global SA measures which are much less computationally demanding than variance based methods. By combining approaches based on the Fisher information matrix and GSA, we will develop a new technique for parameter estimation and optimal experimental design for model validation which would dramatically reduce experimental cost. One of the very promising developments of model analysis is the replacement of complex models and models which need to be run repeatedly on-line with equivalent operational meta models. Sampling efforts of the existing approaches grow exponentially with the number of input variables which makes them impractical in high dimensional cases. We will develop a novel approach to metamodelling using quasi random sampling - high dimensional model representation method (QRS-HDMR) which renders the original exponential difficulty to a problem of only polynomial complexity. We propose to solve optimization problems with high dimensional and computationally expensive objective functions by building QRS-HDMR meta models for the objective functions and set of constraints. Such meta models based optimization problems can be orders of magnitude cheaper to solve compared to the original models. The application of these methods to bioprocessing will involve the development of high-fidelity models for mammalian cell cultures, which produce high-value biological drugs, such as monoclonal antibodies. High-profile examples include the breast cancer drug Herceptin and blockbuster cancer drug Avastin. However, the production of such drugs often relies on manual control and optimisation, which increase cost and time-to-market. On the other hand, the implementation of modern model-based methodologies for optimisation and control necessitates predictive, computationally tractable models, which usually involve numerous parameters and require a high volume of expensive measurements for their validation. In order to address these issues and minimise the cost and time of experimentation, GSA and optimal experimental design will be used to formulate a state-of-the art model of mammalian cell cultures for in silico experimentation, system analysis and derivation of a metamodel for online applications. The validity of this approach will be demonstrated through a case study on antibody-producing CHO cells supplied by Lonza Biologics.
基于模型的复杂过程仿真是一种有效的方法来探索和研究系统的实验分析是昂贵的或耗时的。真实的系统的现代数学模型通常具有数百个变量的高复杂性。使用这种模型的直接建模可能是计算成本很高甚至是棘手的。良好的建模实践需要敏感性分析,通过分析模型结构、选择最佳模型类型和有效识别重要模型参数来确保模型质量。全局SA比其他SA方法具有上级优势。它可以应用于任何类型的模型,用于量化和降低问题的复杂性,而不牺牲精度,它不依赖于一个名义点,如局部SA方法。我们提出了一些先进的模型分析和复杂性降低技术的基础上,全球SA和高效的高维蒙特卡罗(MC)和准MC方法的发展。特别是,我们将开发具有改进的均匀性的高维Sobol'序列发生器。它将允许提高全局SA和准MC方法的效率。全局灵敏度指标的Sobol方法上级其它全局SA方法。然而,由于现有技术的计算限制,它仅适用于低比例尺模型。我们提出了一些技术,这将提高效率的Sobol'方法。我们还提出了一套新的全球SA措施,这是计算量小得多的要求比方差为基础的方法。通过结合基于Fisher信息矩阵和GSA的方法,我们将开发一种新的技术,用于参数估计和模型验证的最优实验设计,这将大大降低实验成本。模型分析的一个非常有前途的发展是用等效的操作Meta模型代替复杂的模型和需要反复在线运行的模型。现有方法的采样工作量随着输入变量的数量呈指数增长,这使得它们在高维情况下不切实际。我们将开发一种新的方法,元建模使用准随机抽样-高维模型表示方法(QRS-HDMR),使原来的指数困难的问题,只有多项式的复杂性。我们建议通过为目标函数和约束集建立QRS-HDMR Meta模型来解决高维和计算昂贵的目标函数的优化问题。与原始模型相比,这种基于Meta模型的优化问题的求解成本可以低几个数量级。这些方法在生物加工中的应用将涉及开发用于哺乳动物细胞培养的高保真模型,该模型产生高价值的生物药物,例如单克隆抗体。引人注目的例子包括乳腺癌药物赫赛汀和重磅炸弹癌症药物阿瓦斯丁。然而,这类药物的生产往往依赖于人工控制和优化,这增加了成本和上市时间。另一方面,现代基于模型的优化和控制方法的实施需要预测性的、计算上易处理的模型,这些模型通常涉及许多参数,并且需要大量昂贵的测量来进行验证。为了解决这些问题并最大限度地减少实验的成本和时间,GSA和最佳实验设计将用于制定最先进的哺乳动物细胞培养模型,用于计算机实验,系统分析和在线应用元模型的推导。将通过Lonza Biologics提供的产抗体CHO细胞的案例研究证明该方法的有效性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monte Carlo and Quasi-Monte Carlo Methods
蒙特卡罗和准蒙特卡罗方法
- DOI:10.1007/978-3-319-33507-0_14
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Giles M
- 通讯作者:Giles M
Quantile based global sensitivity measures
- DOI:10.1016/j.ress.2018.12.001
- 发表时间:2019-05-01
- 期刊:
- 影响因子:8.1
- 作者:Kucherenko, Sergei;Song, Shufang;Wang, Lu
- 通讯作者:Wang, Lu
Application of the control variate technique to estimation of total sensitivity indices
- DOI:10.1016/j.ress.2014.07.008
- 发表时间:2015-02
- 期刊:
- 影响因子:0
- 作者:S. Kucherenko;B. Delpuech;B. Iooss;S. Tarantola
- 通讯作者:S. Kucherenko;B. Delpuech;B. Iooss;S. Tarantola
Estimation of global sensitivity indices for models with dependent variables
- DOI:10.1016/j.cpc.2011.12.020
- 发表时间:2012-04-01
- 期刊:
- 影响因子:6.3
- 作者:Kucherenko, S.;Tarantola, S.;Annoni, P.
- 通讯作者:Annoni, P.
Different numerical estimators for main effect global sensitivity indices
- DOI:10.1016/j.ress.2017.04.003
- 发表时间:2017-09-01
- 期刊:
- 影响因子:8.1
- 作者:Kucherenko, S.;Song, S.
- 通讯作者:Song, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilay Shah其他文献
Perceptions of radiation oncologists and urologists on sources and type of evidence to inform prostate cancer treatment decisions.
放射肿瘤科医生和泌尿科医生对前列腺癌治疗决策的证据来源和类型的看法。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Leona C. Han;Sophia D. Delpe;Nilay Shah;J. Ziegenfuss;Jon C. Tilburt;R. Karnes;Paul L. Nguyen;Cary P. Gross;James B. Yu;Q. Trinh;M. Sun;Weranja K B Ranasinghe;Simon P. Kim - 通讯作者:
Simon P. Kim
Design and operation of solid oxide fuel cell systems: challenges and future research directions
固体氧化物燃料电池系统的设计和运行:挑战和未来研究方向
- DOI:
10.1016/b978-0-12-815253-9.00015-x - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Sharifzadeh;Wen;G. Triulzi;Mirko Hu;T. Borhani;Majid Saidi;V. Krishnan;M. Ghadrdan;Meysam Qadrdan;Yingru Zhao;A. Mohammadzadeh;Seyedeh Kiana Naghib Zadeh;M. Saidi;D. Rashtchian;Nilay Shah - 通讯作者:
Nilay Shah
The role of hydrogen and fuel cell technology in providing security for the UK energy system
氢和燃料电池技术在为英国能源系统提供安全方面的作用
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9
- 作者:
N. Al;Nilay Shah - 通讯作者:
Nilay Shah
Donor lymphocyte infusion in Acute Myeloid Leukemia.
- DOI:
10.1016/j.beha.2023.101484 - 发表时间:
2023-09 - 期刊:
- 影响因子:0
- 作者:
Nilay Shah - 通讯作者:
Nilay Shah
Optimisation of photovoltaic and battery systems for cost-effective energy solutions in commercial buildings
针对商业建筑中具有成本效益的能源解决方案对光伏和电池系统进行优化
- DOI:
10.1016/j.apenergy.2025.125907 - 发表时间:
2025-08-15 - 期刊:
- 影响因子:11.000
- 作者:
Brantyo Laksahapsoro;Max Bird;Salvador Acha;Nilay Shah - 通讯作者:
Nilay Shah
Nilay Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilay Shah', 18)}}的其他基金
DEMSIS: Digital energy management services in supermarket buildings via cloud-based solutions
DEMSIS:通过基于云的解决方案为超市建筑提供数字能源管理服务
- 批准号:
EP/W027348/1 - 财政年份:2022
- 资助金额:
$ 87.7万 - 项目类别:
Research Grant
Ocean-REFuel - Ocean Renewable Energy Fuels
Ocean-REFuel - 海洋可再生能源燃料
- 批准号:
EP/W005158/1 - 财政年份:2021
- 资助金额:
$ 87.7万 - 项目类别:
Research Grant
Digital Circular Electrochemical Economy (DCEE)
数字循环电化学经济(DCEE)
- 批准号:
EP/V042432/1 - 财政年份:2021
- 资助金额:
$ 87.7万 - 项目类别:
Research Grant
Meeting the UK demand for COVID19/SARS-CoV-2 vaccines via integrated manufacturing and supply chain optimisation
通过集成制造和供应链优化满足英国对 COVID19/SARS-CoV-2 疫苗的需求
- 批准号:
EP/V01479X/1 - 财政年份:2020
- 资助金额:
$ 87.7万 - 项目类别:
Research Grant
Bioenergy value chains: Whole systems analysis and optimisation
生物能源价值链:整个系统分析和优化
- 批准号:
EP/K036734/1 - 财政年份:2013
- 资助金额:
$ 87.7万 - 项目类别:
Research Grant
Application of global sensitivity analysis for complexity reduction, parameter estimation and time series forecasting
应用全局敏感性分析来降低复杂性、参数估计和时间序列预测
- 批准号:
EP/D506743/1 - 财政年份:2006
- 资助金额:
$ 87.7万 - 项目类别:
Research Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
- 批准号:82372089
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
网格中以情境为中心的应用自动化研究
- 批准号:60703054
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and application of 40Ar/39Ar dating methods for young volcanic rocks
年轻火山岩40Ar/39Ar测年方法的开发与应用
- 批准号:
24K17153 - 财政年份:2024
- 资助金额:
$ 87.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of Molecular Mechanisms of Child Abuse Stress Focusing on DNA Methylation and Development and Application of Quantitative Methods
以DNA甲基化为重点的儿童虐待应激分子机制阐明及定量方法的发展与应用
- 批准号:
23K16378 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Development of a Dedicated Fluidjet Technology for Single-session Debridement of Necrotizing Pancreatitis
开发用于坏死性胰腺炎单次清创的专用流体喷射技术
- 批准号:
10699626 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Development and Preliminary Testing of an Adjunct Smartphone App to Reduce Marijuana Use in Court-Involved, Non-Incarcerated Adolescents
开发和初步测试辅助智能手机应用程序,以减少涉及法庭的非监禁青少年吸食大麻
- 批准号:
10754759 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Highly Elastic Biomaterial Development for Urethral Application
尿道应用的高弹性生物材料开发
- 批准号:
10573094 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
- 批准号:
23K01377 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Evaluation of an Avatar Guided Mobile Health for Emerging Adults
针对新兴成年人的化身引导移动健康的开发和评估
- 批准号:
10843991 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Development, Elucidation, and Application of New Principles in Stereoselective Catalysis
立体选择性催化新原理的开发、阐明和应用
- 批准号:
10622995 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
- 批准号:
23KJ0981 - 财政年份:2023
- 资助金额:
$ 87.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows