Retrofit of Rocking Structures

摇摆结构的改造

基本信息

  • 批准号:
    EP/H032657/1
  • 负责人:
  • 金额:
    $ 12.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Numerous structures exhibit rocking behaviour when loaded dynamically, including unreinforced masonry structures, monuments, towers, bridge piers, sculptures, etc. The collapse of these structures due to dynamic loading has caused global destruction, as recently exhibited by earthquakes throughout the world. In the UK, collapse of masonry bridges during intense traffic loading is also a large concern. Thus, there is a national and international need to prevent the devastation caused by the collapse of these structures.Despite a significant amount of research in this area, engineers still misunderstand the fundamental difference between the dynamic response of rocking structures and typical elastic structures, and therefore assess rocking structures from a flawed perspective. The typical solution is to prevent rocking behaviour instead of controlling it. Prevention is usually achieved by tying structures down or reinforcing them. In the case of masonry structures, this is accomplished by drilling through structures and adding steel reinforcing, or by wrapping structures in Fibre-Reinforce Polymers (FRP). While these methods can be effective, they can over-stiffen structures and be destructive. Adding stiffness drastically changes fundamental dynamic behaviour, and can cause high stresses which lead to local damage. Such damage could be prevented with alternate retrofit solutions.The primary goal of this research is to develop new methods of controlling rocking motion using optimized damping solutions (e.g. shock absorbers). Instead of adding stiffness to the structure, damping is proposed because it allows some motion while dissipating unwanted energy. Thus, both devastating collapse of structures which have not been reinforced, and unnecessary local damage due to over-stiffening, could be prevented.In this context, this research will aim to characterize the fundamental behaviour of damped rocking motion through analytical modelling. A single rocking block analytical model will serve as tool to determine the type of damping which best controls rocking motion, and then to optimize the specific characteristics of damping mechanisms. Subsequently, more complex analytical models which describe the rocking behaviour of masonry arches will be created. Arches are typical components of masonry buildings and bridges, so understanding their dynamic behaviour is critical in developing appropriate retrofitting solutions. Analytical arch models will be used to test a variety of retrofit schemes which incorporate optimized damping mechanisms.While analytical models are critical for characterizing behaviour and designing retrofit solutions, experimental testing is essential to evaluate their accuracy. Results of analytical modelling will first be used to inform the design and construction of optimized spring-damper elements. These elements will enable the retrofit of blocks and arches which will be tested under horizontal ground motion using a small scale shake table. Experimental results will be used to evaluate analytical modelling results and to determine the effectiveness of retrofit solutions.Finally, analytical modelling is effective for simple structures, but it is typically not feasible for more complicated ones. Thus, the final aim of this work is to use commercial Discrete Element Modelling (DEM) software to predict experimental results. DEM is an appropriate tool for this purpose because it is tailored to model the interaction of multiple distinct blocks. If DEM is determined to be accurate, it could be an essential tool for designing and testing retrofit solutions for more complicated structures.In summary, new retrofit solutions are needed. This research aims to lay the foundation for the development of a new class of retrofit solutions which exploit clever damping systems. In the process, scientific progress will be made regarding the control of non-smooth dynamic systems in general.
许多结构在动态加载时会表现出摇摆行为,包括未加固的砌体结构、纪念碑、塔楼、桥墩、雕塑等。这些结构由于动态加载而倒塌,造成了全球性的破坏,正如最近世界各地的地震所展示的那样。在英国,砖石桥梁在强烈的交通负荷下倒塌也是一个很大的问题。因此,有一个国家和国际需要,以防止这些结构的倒塌所造成的破坏,尽管在这方面的大量研究,工程师仍然误解了摇摆结构的动力响应与典型的弹性结构之间的根本区别,因此从一个有缺陷的角度来评估摇摆结构。典型的解决方案是防止摇摆行为,而不是控制它。预防通常是通过捆绑结构或加固它们来实现的。在砌体结构的情况下,这是通过钻穿结构和添加钢筋,或通过纤维增强聚合物(FRP)包裹结构来实现的。虽然这些方法可能是有效的,但它们可能过度破坏结构并具有破坏性。增加刚度会极大地改变基本的动态行为,并可能导致高应力,从而导致局部损坏。这种损坏可以通过替代改造解决方案来防止。本研究的主要目标是开发使用优化阻尼解决方案(例如减震器)控制摇摆运动的新方法。提出阻尼而不是增加结构的刚度,因为它允许一些运动,同时耗散不必要的能量。因此,这两个破坏性的倒塌结构没有得到加强,和不必要的局部损坏,由于过度stiffening,可以防止。在这种情况下,本研究的目的是通过分析建模阻尼摇摆运动的基本行为的特征。一个单一的摇摆块分析模型将作为工具,以确定最好的控制摇摆运动的阻尼类型,然后优化阻尼机构的具体特性。随后,更复杂的分析模型,描述砌体拱的摇摆行为将被创建。拱是砖石建筑和桥梁的典型组成部分,因此了解其动态行为对于开发适当的改造解决方案至关重要。分析拱模型将用于测试各种包含优化阻尼机制的加固方案。虽然分析模型对于表征性能和设计加固方案至关重要,但实验测试对于评估其准确性至关重要。分析建模的结果将首先用于通知优化的弹簧阻尼器元件的设计和构造。这些元素将使改造的块和拱,将测试下的水平地面运动使用一个小规模的振动台。实验结果将用于评估分析建模结果,并确定改造解决方案的有效性。最后,分析建模对简单结构有效,但对更复杂的结构通常不可行。因此,这项工作的最终目的是使用商业离散元建模(DEM)软件来预测实验结果。DEM是一个适当的工具,因为它是专门为模拟多个不同的块的相互作用。如果DEM被确定是准确的,它可能是设计和测试更复杂结构的改造解决方案的重要工具。总之,需要新的改造解决方案。这项研究的目的是奠定基础,开发一类新的改造解决方案,利用巧妙的阻尼系统。在此过程中,一般而言,在非光滑动态系统的控制方面将取得科学进展。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The interaction of elasticity and rocking in flexible structures allowed to uplift
Dynamically equivalent rocking structures
Computational Methods in Earthquake Engineering - Volume 2
地震工程计算方法 - 第 2 卷
  • DOI:
    10.1007/978-94-007-6573-3_12
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrakopoulos E
  • 通讯作者:
    Dimitrakopoulos E
Equivalent rocking systems: Fundamental rocking parameters
等效摇摆系统:基本摇摆参数
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    DeJong MJ
  • 通讯作者:
    DeJong MJ
Seismic response of a stone masonry spire
石砌塔尖的地震响应
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    DeJong MJ
  • 通讯作者:
    DeJong MJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew DeJong其他文献

Combined Carotid Endarterectomy and Coronary Artery Bypass Graft Surgery Provides Durable Long-term Cerebral Ischemia and Mortality Prevention in the Vascular Quality Initiative
  • DOI:
    10.1016/j.jvs.2023.03.178
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ashley Penton;Jonathan Lin;Grant Kolde;Matthew DeJong;Matthew Blecha
  • 通讯作者:
    Matthew Blecha
The Impact of Sociodemographic Variables on Functional Recovery Following Lower Extremity Amputation
  • DOI:
    10.1016/j.jvs.2024.06.094
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rylie O'Meara;Karan Chawla;Akshita Gorantla;Robert Kelly;Matthew DeJong;Trissa Babrowski;Pegge Halandras;Matthew Blecha
  • 通讯作者:
    Matthew Blecha
Structural health monitoring of offshore wind turbines using distributed acoustic sensing (DAS)
  • DOI:
    10.1007/s13349-024-00883-w
  • 发表时间:
    2024-12-11
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    James T. Xu;Linqing Luo;Jaewon Saw;Chien-Chih Wang;Sumeet K. Sinha;Ryan Wolfe;Kenichi Soga;Yuxin Wu;Matthew DeJong
  • 通讯作者:
    Matthew DeJong
The three-dimensional flow of force in a damaged, skewed masonry arch railway bridge – Insights from fibre Bragg rosettes, videogrammetry, and modelling
一座受损斜砌石拱桥的三维力流——基于光纤布拉格光栅、摄像测量和建模的见解
  • DOI:
    10.1016/j.engstruct.2025.120298
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Sam Cocking;Haris Alexakis;Matthew DeJong
  • 通讯作者:
    Matthew DeJong
Foreword to the special issue “Adjacent Interacting Masonry Structures”
  • DOI:
    10.1007/s10518-024-02017-5
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Katrin Beyer;Christof Butenweg;Andrea Penna;Matthew DeJong
  • 通讯作者:
    Matthew DeJong

Matthew DeJong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew DeJong', 18)}}的其他基金

Natural Hazards Engineering Research Infrastructure: Computational Modeling and Simulation Center 2021-2025
自然灾害工程研究基础设施:计算建模与仿真中心 2021-2025
  • 批准号:
    2131111
  • 财政年份:
    2021
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Cooperative Agreement
Tunnelling-induced settlement damage to masonry structures: Centrifuge testing and computational modelling
隧道开挖引起的砌体结构沉降损坏:离心机测试和计算建模
  • 批准号:
    EP/K018221/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Research Grant

相似海外基金

Characterizing local environments of dopants segregated to grain boundaries using beam-rocking electron microscopy
使用光束摇摆电子显微镜表征偏析到晶界的掺杂剂的局部环境
  • 批准号:
    23K17816
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
ERI: A Hybrid Mechanics-Guided Machine Learning-Based Predictive Framework for the Performance of Rocking Foundations During Earthquake Loading
ERI:基于混合力学引导的机器学习预测框架,用于地震加载期间摇摆基础的性能
  • 批准号:
    2138631
  • 财政年份:
    2022
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
Development of rocking isolation bearing and fundamental study for the application on bridge structures
摇摆隔震支座的研制及其在桥梁结构中应用的基础研究
  • 批准号:
    22K14313
  • 财政年份:
    2022
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Self-centering rocking steel bridge piers for seismic regions
地震区自定心摇摆钢桥墩
  • 批准号:
    519909-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Collaborative Research and Development Grants
Controlled rocking reinforced masonry systems for enhanced resilience under seismic risk
受控摇动加固砌体系统可增强地震风险下的恢复能力
  • 批准号:
    511846-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Collaborative Research and Development Grants
Large-scale testing of controlled rocking systems
受控摇摆系统的大规模测试
  • 批准号:
    562972-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 12.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Self-centering rocking steel bridge piers for seismic regions
地震区自定心摇摆钢桥墩
  • 批准号:
    519909-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Collaborative Research and Development Grants
Development of dopant environment analysis method using beam-rocking transmission electron microscopy
使用摇束透射电子显微镜进行掺杂环境分析方法的开发
  • 批准号:
    20K05088
  • 财政年份:
    2020
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controlled rocking reinforced masonry systems for enhanced resilience under seismic risk
受控摇动加固砌体系统可增强地震风险下的恢复能力
  • 批准号:
    511846-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Collaborative Research and Development Grants
Damage Evaluation and Limit States of Rocking Concrete Walls
摇摆混凝土墙的损伤评价及极限状态
  • 批准号:
    20K14870
  • 财政年份:
    2020
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了