Directed Assembly of Extended Structures with Targeted Properties
具有目标特性的扩展结构的定向组装
基本信息
- 批准号:EP/H035052/1
- 负责人:
- 金额:$ 18.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has been an exponential growth in the Chemical Sciences over the last two decades and in the current socio-economic environment it is apparent that the chemical sciences will be central in the drive for cleaner, more efficient energy sources and in solutions to issues of environmental pollution and global warming, while also underpinning advances in healthcare and supporting the drive to combat terrorism. Fundamental to all these issues is a deeper understanding of how processes occur at the molecular level and nanometre level, how this knowledge may be applied to generate materials with particular properties across all the size scales from molecules to bulk materials, and how these materials may find applications in modern society that will be of benefit to all. This is very much the Grand Challenge for the next few decades and incorporates not only chemical scientists, but also biologists, physicists, materials scientists, mathematicians, engineers, economists and educators. Much of the progress is dependant on an understanding of chemistry beyond the molecule and the directed assembly of extended structures with targeted properties . Our control over the assembly of atoms into molecules and materials, and the controlled assembly of molecules into both solid-state and aggregates in solution, remains very limited in scope, setting limits on the ability of chemists and materials scientists to design materials with desired properties even in cases where the underlying material requirements for a particular property are understood. Control of covalent bond formation in conventional synthesis of molecules with strong bonds is good and remarkably complex molecules can be prepared with confidence in multi-step (and increasingly in single-pot) syntheses. In contrast, much more limited control is possible in the preparation of solid-state materials, by techniques such vapour deposition for infinite structures, crystal engineering (employing non-covalent intermolecular interactions and utilising molecules as the basic building blocks) for molecular solids, or solution-phase assembly of molecular components using intermolecular interactions. Covalent bond formation in small molecules can be seen as the first step in an exploration of chemical assembly that needs to be dramatically extended if we are to meet our goal of achieving the a priori design of functional materials. Our contention is that this can be achieved by the incorporation of the use of molecular synthons and non-covalent interactions, to drive the assembly of more complex systems with the same degree of certainty and control that is already achievable for molecular synthesis. By achieving this goal, biological levels of complexity and function could be imposed on artificial materials, with all the evident benefits.We now propose to set up a network to identify the key areas of the Grand Challenge to develop methods to direct the assembly of extended structures with targeted properties and to produce a strategic roadmap to meet the challenge and overcome the barriers. The network will consist of a wide range of scientists, members of the industrial community, members of learned societies, funding bodies and policy makers. A series of general and themed meetings will be held and a roadshow will promote the Grand Challenge to the wider community. The propsal has been submitted by a group of seven researchers, all of whom have contributed extensively to the development of the ideas emanating from an initial Grand Challenges Meeting in late 2008. The team is Professor Paul Raithby (PI, University of Bath), Dr Harris Makatsoris (Brunel University), Professor George Jackson (Imperial College, London), Professor Matthew Rosseinsky (University of Liverpool), Professor Michael Ward (University of Sheffield) and Professor Chick Wilson (University of Glasgow).
在过去的二十年里,化学科学呈指数级增长,在当前的社会经济环境下,化学科学显然将成为推动更清洁、更高效的能源以及解决环境污染和全球变暖问题的核心,同时也支撑医疗保健的进步并支持打击恐怖主义的努力。所有这些问题的基础是更深入地了解分子水平和纳米水平上的过程如何发生,如何应用这些知识来生成从分子到散装材料的所有尺寸范围内具有特定性能的材料,以及这些材料如何在现代社会中找到对所有人有利的应用。这在很大程度上是未来几十年的巨大挑战,不仅涉及化学科学家,还涉及生物学家、物理学家、材料科学家、数学家、工程师、经济学家和教育家。大部分进展取决于对分子之外的化学的理解以及具有目标特性的扩展结构的定向组装。我们对原子组装成分子和材料的控制,以及对分子在溶液中的固态和聚集体的受控组装的控制范围仍然非常有限,这限制了化学家和材料科学家设计具有所需性能的材料的能力,即使在了解特定性能的基本材料要求的情况下也是如此。在具有强键的分子的常规合成中,对共价键形成的控制是良好的,并且可以在多步骤(并且越来越多地在单锅)合成中放心地制备非常复杂的分子。相比之下,在固态材料的制备中,通过诸如无限结构的气相沉积、分子固体的晶体工程(采用非共价分子间相互作用并利用分子作为基本构件)或利用分子间相互作用进行分子组分的溶液相组装等技术,可以进行更有限的控制。小分子中的共价键形成可以被视为化学组装探索的第一步,如果我们要实现功能材料先验设计的目标,则需要大幅扩展化学组装。我们的观点是,这可以通过结合分子合成子和非共价相互作用的使用来实现,以与分子合成已经可实现的相同程度的确定性和控制来驱动更复杂系统的组装。通过实现这一目标,可以将生物水平的复杂性和功能强加在人造材料上,并带来所有明显的好处。我们现在建议建立一个网络来确定大挑战的关键领域,开发方法来指导具有目标特性的扩展结构的组装,并制定战略路线图来应对挑战和克服障碍。该网络将由广泛的科学家、工业界成员、学术团体成员、资助机构和政策制定者组成。将举行一系列一般会议和主题会议,并通过路演向更广泛的社区宣传大挑战。该提案由七名研究人员组成的小组提交,他们都对 2008 年末首次大挑战会议中提出的想法的发展做出了广泛的贡献。该团队包括 Paul Raithby 教授(巴斯大学 PI)、Harris Makatsoris 博士(布鲁内尔大学)、George Jackson 教授(伦敦帝国理工学院)、Matthew Rosseinsky 教授(利物浦大学)、Michael Ward 教授(英国大学) 谢菲尔德)和 Chick Wilson 教授(格拉斯哥大学)。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Why don't we find more polymorphs?
- DOI:10.1107/s2052519213018861
- 发表时间:2013-08-01
- 期刊:
- 影响因子:1.9
- 作者:Price, Sarah L.
- 通讯作者:Price, Sarah L.
Directed Assembly Network phase three launch: a round-up of success to date and strategy for the future.
- DOI:10.1186/s13065-017-0310-4
- 发表时间:2017-08-04
- 期刊:
- 影响因子:0
- 作者:Rose JAR;Raithby PR;Makatsoris C
- 通讯作者:Makatsoris C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Robert Raithby其他文献
Paul Robert Raithby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Robert Raithby', 18)}}的其他基金
Understanding and engineering function in switchable molecular crystals
可切换分子晶体的理解和工程功能
- 批准号:
EP/K012940/2 - 财政年份:2017
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
RCaH Impact Acceleration Fellowships and Workshops
RCaH 影响力加速奖学金和研讨会
- 批准号:
EP/M010481/1 - 财政年份:2014
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Understanding and engineering function in switchable molecular crystals
可切换分子晶体的理解和工程功能
- 批准号:
EP/K012576/1 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Understanding and engineering function in switchable molecular crystals
可切换分子晶体的理解和工程功能
- 批准号:
EP/K012940/1 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Applying Long-lived Metastable States with Switchable Functionality via Kinetic Control of Molecular Assembly - a Programme in Functional Materials
通过分子组装的动力学控制应用具有可切换功能的长寿命亚稳态 - 功能材料计划
- 批准号:
EP/K004956/1 - 财政年份:2012
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Directed Assembly Grand Challenge Network Continuation
定向组装大挑战网络延续
- 批准号:
EP/K014382/1 - 财政年份:2012
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Dynamic Structural Science at the RC@H
RC@H 的动态结构科学
- 批准号:
EP/I01974X/1 - 财政年份:2011
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Time Resolved Solid State Structural Studies Across the Picosecond to Microsecond Time Domains
皮秒到微秒时域的时间分辨固态结构研究
- 批准号:
EP/G067759/1 - 财政年份:2009
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Non-ambient Studies on Opto-electronic Materials
光电材料的非环境研究
- 批准号:
EP/F021151/1 - 财政年份:2008
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
New Facilities for studying single crystals under a range of non-ambient conditions using SR radiation
使用SR辐射在一系列非环境条件下研究单晶的新设施
- 批准号:
ST/D502543/1 - 财政年份:2008
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
相似国自然基金
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 18.48万 - 项目类别:
Fellowship
NSF PRFB FY23: Effects of bioengineering on community assembly and ecosystem functioning in a soil microbial community
NSF PRFB FY23:生物工程对土壤微生物群落的群落组装和生态系统功能的影响
- 批准号:
2305961 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Fellowship Award
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BatCAT - Battery Cell Assembly Twin
BatCAT - 电池组装双胞胎
- 批准号:
10110057 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
EU-Funded
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
- 批准号:
2339472 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
- 批准号:
2404081 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
Revolutionary Rotors: A Robotic Flywheel Assembly Line
革命性转子:机器人飞轮装配线
- 批准号:
10098069 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Collaborative R&D














{{item.name}}会员




