Applying Long-lived Metastable States with Switchable Functionality via Kinetic Control of Molecular Assembly - a Programme in Functional Materials

通过分子组装的动力学控制应用具有可切换功能的长寿命亚稳态 - 功能材料计划

基本信息

  • 批准号:
    EP/K004956/1
  • 负责人:
  • 金额:
    $ 412.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the most important current areas in chemistry is developing new materials that are able to respond rapidly andreliably to changes in local environment, and send out signals that let us know what is happening. These "smart" materials can be used as sensors in a wide range of situations and are used in many aspects of modern life, from press-on patches to take a patient's temperature to solid-state electronic components in modern televisions. The clever chemistry used to develop such materials can help make materials with just the right property for the right situation - they can be made tuneable. The chemist aims to produce new, smart, responsive materials to be manufactured into useful devices for real applications. To produce new, better, more energy efficient materials that can benefit UK manufacturing and keep the UK at the forefront of technological developments, we need to find new ways of controlling the properties and functions of molecules to produce "even smarter" materials. This proposal aims to do just this, using a new way of tuning the properties of materials.Most smart materials operate in an equilibrium state, while most complex systems, such as animals and humans, operatein non-equilibrium states that are much more responsive to small changes in environment and can thus function in morecomplex ways; indeed, if the human race operated in equilibrium, life would cease to exist as we know it! We need stimulito keep us alive we wish to take inspiration from ourselves in developing a new generation of smart materials, by applyingthe ideas of "non-equilibrium" states to the development and operation of new materials. These will operate in differentways giving access to new properties and functions.Our new approach to designing new materials that operate in non-equilibrium conditions, uses "metastable" or excitedstates - this means that we stimulate the material, for example by a light pulse, and by doing so we change the way inwhich the chemical structure of that material delivers its properties. Effectively using excited states we can change thebehaviour of the electrons and hence the effect of the chemistry of a material without apparently changing its chemistry at all! Many current switchable smart materials must include regions of a different chemical or physical composition - these defects are very important for giving a material its properties, but produce a heterogeneous material - a good example is the "metamaterials" which physicists are developing. We will be able to introduce the same tuneable function but in chemically homogeneous materials, with real advantages for controlling their stability and performance.To achieve this, we have to make significant advances across a range of areas, including designing the chemistry ofmetastable switchable materials, generating excited states that give the desired change of property, controlling these"metastable-excited states" and eventually to build these into useful devices for applications. Our proposal will allow us to develop ways of controlling the properties and functions of these metastable materials in ways that are not possiblecurrently.There are many possible applications for these new materials including more efficient conductors and more miniaturisationof devices that rely on electronics. We can also envisage engineering thin films that will provide each of the colours of the spectrum by simply changing the input voltage, allowing smart paints or smart fabrics whose colour could be chosen to suit mood or environment. We can also develop "active membranes" whose mechanical properties can be actively tuned, which will be useful in medicine and energy applications. In the longer term there is the prospect of developingmaterials with a negative refractive index, whose special properties would mean that by switching on and off an electriccurrent, objects will apparently disappear and reappear!
当前化学最重要的领域之一是开发新材料,这些材料能够对局部环境的变化做出快速可靠的反应,并发出信号让我们知道发生了什么。这些“智能”材料可用作各种情况下的传感器,并用于现代生活的许多方面,从按压贴片到现代电视中的固态电子元件。用于开发此类材料的巧妙化学方法可以帮助制造具有适合特定情况的正确属性的材料-它们可以被制成可调的。这位化学家的目标是生产新的、智能的、反应灵敏的材料,这些材料将被制造成用于真实的应用的有用设备。为了生产新的、更好的、更节能的材料,使英国的制造业受益,并使英国保持在技术发展的前沿,我们需要找到控制分子性质和功能的新方法,以生产“更智能”的材料。这一提议的目的就是利用一种调整材料性质的新方法来做到这一点。大多数智能材料都在平衡状态下运行,而大多数复杂的系统,如动物和人类,都在非平衡状态下运行,对环境的微小变化反应更灵敏,因此可以以更复杂的方式发挥作用;事实上,如果人类在平衡状态下运行,我们所知道的生命将不复存在!我们需要刺激来维持我们的生命,我们希望从自己身上获得灵感,通过将“非平衡”状态的思想应用于新材料的开发和操作,来开发新一代智能材料。我们设计在非平衡条件下工作的新材料的新方法,使用“亚稳态”或激发态-这意味着我们刺激材料,例如通过光脉冲,通过这样做,我们改变了材料的化学结构传递其特性的方式。有效地利用激发态,我们可以改变电子的行为,从而改变材料的化学效应,而不会明显改变其化学性质。目前许多可切换的智能材料必须包括不同化学或物理成分的区域-这些缺陷对于赋予材料其特性非常重要,但会产生异质材料-一个很好的例子是物理学家正在开发的“超材料”。我们将能够在化学均质材料中引入相同的可调功能,并在控制其稳定性和性能方面具有真实的优势。为了实现这一目标,我们必须在一系列领域取得重大进展,包括设计亚稳态可转换材料的化学性质,产生激发态,使其产生所需的性质变化,控制这些“亚稳态激发态”,并最终将其构建成有用的应用器件。我们的建议将使我们能够开发出控制这些亚稳态材料的性质和功能的方法,而这些方法目前是不可能的。这些新材料有许多可能的应用,包括更有效的导体和更多依赖于电子器件的器件。我们还可以设想通过简单地改变输入电压来提供光谱中每种颜色的工程薄膜,允许智能涂料或智能织物的颜色可以选择以适应情绪或环境。我们还可以开发机械性能可以主动调节的“活性膜”,这将在医学和能源应用中非常有用。从长远来看,有发展负折射率材料的前景,这种材料的特殊性质意味着,通过接通和切断电流,物体显然会消失和再现!

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks: System-Specific Reactivity and Functionality-Triggered Dissolution.
Polymer of intrinsic microporosity (PIM-1) enhances hydrogen peroxide production at Gii-Sens graphene foam electrodes
  • DOI:
    10.1016/j.elecom.2022.107394
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Beluomini, Maisa Azevedo;Wang, Yu;Marken, Frank
  • 通讯作者:
    Marken, Frank
Synthesis, characterization, and optoelectronic properties of phenothiazine-based organic co-poly-ynes
  • DOI:
    10.1039/d1nj00925g
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Al-Busaidi, Idris Juma;Haque, Ashanul;Khan, Muhammad S.
  • 通讯作者:
    Khan, Muhammad S.
Correction: Utilization of a Pt(II) di-yne chromophore incorporating a 2,2'-bipyridine-5,5'-diyl spacer as a chelate to synthesize a green and red emitting d-f-d heterotrinuclear complex.
修正:利用 Pt(II) 二炔发色团掺入 2,2-联吡啶-5,5-二基间隔基作为螯合物,合成发射绿光和红光的 d-f-d 异三核复合物。
  • DOI:
    10.1039/d1dt90009a
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Al-Busaidi IJ
  • 通讯作者:
    Al-Busaidi IJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Robert Raithby其他文献

Paul Robert Raithby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Robert Raithby', 18)}}的其他基金

Understanding and engineering function in switchable molecular crystals
可切换分子晶体的理解和工程功能
  • 批准号:
    EP/K012940/2
  • 财政年份:
    2017
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
RCaH Impact Acceleration Fellowships and Workshops
RCaH 影响力加速奖学金和研讨会
  • 批准号:
    EP/M010481/1
  • 财政年份:
    2014
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
Understanding and engineering function in switchable molecular crystals
可切换分子晶体的理解和工程功能
  • 批准号:
    EP/K012576/1
  • 财政年份:
    2013
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
Understanding and engineering function in switchable molecular crystals
可切换分子晶体的理解和工程功能
  • 批准号:
    EP/K012940/1
  • 财政年份:
    2013
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
Directed Assembly Grand Challenge Network Continuation
定向组装大挑战网络延续
  • 批准号:
    EP/K014382/1
  • 财政年份:
    2012
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
Dynamic Structural Science at the RC@H
RC@H 的动态结构科学
  • 批准号:
    EP/I01974X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
Directed Assembly of Extended Structures with Targeted Properties
具有目标特性的扩展结构的定向组装
  • 批准号:
    EP/H035052/1
  • 财政年份:
    2010
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
Time Resolved Solid State Structural Studies Across the Picosecond to Microsecond Time Domains
皮秒到微秒时域的时间分辨固态结构研究
  • 批准号:
    EP/G067759/1
  • 财政年份:
    2009
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
Non-ambient Studies on Opto-electronic Materials
光电材料的非环境研究
  • 批准号:
    EP/F021151/1
  • 财政年份:
    2008
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
New Facilities for studying single crystals under a range of non-ambient conditions using SR radiation
使用SR辐射在一系列非环境条件下研究单晶的新设施
  • 批准号:
    ST/D502543/1
  • 财政年份:
    2008
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant

相似国自然基金

基于Relm-β核转位激活EndMT促进肺动脉高压研究肺心汤预防 Long COVID 机制
  • 批准号:
    2025JJ90008
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
维生素D调控巨噬细胞极化在改善“Long COVID”中作用和机制的分子流行病学研究
  • 批准号:
    82373643
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
  • 批准号:
    LQ23H150003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
水稻LONG PANICLE1基因调控穗长的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
long-TSLP诱导的M2型巨噬细胞调控肺成纤维细胞线粒体融合在哮喘气道重塑中的作用和机制
  • 批准号:
    81970032
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
LONG8及其互作蛋白LGIP1调控水稻籽粒大小的分子机理研究
  • 批准号:
    31871219
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
拟南芥微管结合蛋白Long Seed1调控种子大小的分子机制研究
  • 批准号:
    31770205
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
long-TSLP和short-TSLP调控肺成纤维细胞有氧糖酵解在哮喘气道重塑中的作用和机制研究
  • 批准号:
    81700034
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
哮喘气道上皮来源long-TSLP/short-TSLP失衡对气道重塑中成纤维细胞活化的分子机制研究
  • 批准号:
    81670026
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Fellowship Award
Reversing thymus involution by targeting long-lived stem cells
通过靶向长寿干细胞来逆转胸腺退化
  • 批准号:
    EP/Y026543/1
  • 财政年份:
    2024
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Research Grant
MCA: Developing a Paleorecord of Hg in Long-Lived Mollusks from the Gulf of Maine
MCA:开发缅因湾长寿软体动物中汞的古记录
  • 批准号:
    2322048
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Standard Grant
Valuing all Voices: Using People with Lived Experience to Reduce Sedentary Behaviour in Long-Term Care Homes
重视所有声音:利用有生活经验的人来减少长期护理院的久坐行为
  • 批准号:
    480807
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Miscellaneous Programs
Supporting the Montreal Protocol: monitoring long-lived halogenated species with atmospheric nadir sounders
支持《蒙特利尔议定书》:利用大气最低点探测器监测长寿命卤化物种
  • 批准号:
    2902397
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Studentship
Development of the Innovative trigger system toward a wide variety of long-lived BSM particle searches
开发创新触发系统,实现多种长寿命 BSM 粒子搜索
  • 批准号:
    23K19049
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Identifying vulnerabilities in the long-lived HIV reservoir to accelerate its decay
识别长期艾滋病毒储存库的脆弱性以加速其腐烂
  • 批准号:
    10673309
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
Longevity engineering: Mechanisms underlying active longevity in the extremely long-lived organisms
长寿工程:极长寿生物体活跃长寿的机制
  • 批准号:
    23H00332
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Transform your Training: Women with Lived Experience - Delivering Long-Term Social Impact in frontline services.
转变您的培训:具有生活经验的女性 - 在一线服务中提供长期社会影响。
  • 批准号:
    10055798
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Grant for R&D
SBIR Phase I: Low-Cost Isotope Battery for Long-Lived Applications
SBIR 第一阶段:适用于长寿命应用的低成本同位素电池
  • 批准号:
    2304501
  • 财政年份:
    2023
  • 资助金额:
    $ 412.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了