Integrability in Multidimensions and Boundary Value Problems
多维可积性和边值问题
基本信息
- 批准号:EP/H04261X/1
- 负责人:
- 金额:$ 59.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There exist certain distinctive nonlinear equations called integrable. The impact of the mathematical analysis of such special equations cannot be overestimated. For example, firstly, for integrable equations we have learned detailed aspects of solution behaviour, which includes the long-time asymptotics of solutions and the central role played by solitons. Secondly, it has become apparent that some of the lessons taught by integrable equations have applicability even in non-integrable situations. Indeed, many investigations in the last decade regarding well-posedness of PDEs in appropriate Sobolev spaces have their genesis in results coming from the theory of integrable systems, albeit in non-integrable settings. Perhaps the two most important open problems in the theory of integrable equations have been (a) the solution of initial-boundary as opposed to initial value problems and (b) the derivation and solution of integrable nonlinear PDEs in 3+1 dimensions. In the last 12 years, the PI has made significant progress towards the solution of both of these problems. Namely, regarding (a) he has introduced a unified approach for analysing boundary value problems in two dimensions and regarding (b) he has derived and solved integrable nonlinear PDEs in 4+2. However, many fundamental problems remain open. The proposal aims to investigate several such problems among which the most significant are: (a) the extension of the method for solving boundary value problems from two to three dimensions and (b) the reduction of the new integrable PDEs from 4+2 to 3+1. In addition, the Camassa-Holm analogue of the celebrated sine Gordon equation, several boundary value problems of the elliptic version of the Ernst equation, and the KdV equation on the half-line with time periodic boundary conditions will also be investigated.
存在某些独特的称为可积的非线性方程。这种特殊方程的数学分析的影响怎么估计都不为过。例如,首先,对于可积方程,我们已经了解了解的行为的详细方面,包括解的长期渐近性和孤子所起的中心作用。其次,很明显,由可积方程教授的一些课程即使在不可积的情况下也适用。事实上,在过去的十年里,许多关于适当的Sobolev空间中的偏微分方程适定性的研究都起源于来自可积系统理论的结果,尽管是在不可积的环境下。可积方程理论中最重要的两个公开问题可能是(A)与初值问题相对的初边值问题的解和(B)3+1维可积非线性偏微分方程组的推导和解。在过去的12年里,和平研究所在解决这两个问题方面取得了重大进展。也就是说,关于(A)他引入了分析二维边值问题的统一方法,关于(B)他在4+2中导出并求解了可积的非线性偏微分方程组。然而,许多基本问题仍然悬而未决。该建议旨在研究几个这样的问题,其中最重要的是:(A)将求解边值问题的方法从二维推广到三维;(B)将新的可积偏微分方程组从4+2减少到3+1。此外,还将研究著名的Sine Gordon方程的Camassa-Holm模拟,椭圆型Ernst方程的几个边值问题,以及具有时间周期边界条件的半直线上的KdV方程。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EEG for Current With Two-Dimensional Support.
脑电图用于电流,并获得二维支持。
- DOI:10.1109/tbme.2017.2785342
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Dassios G;Fokas AS;Hashemzadeh P;Leahy RM
- 通讯作者:Leahy RM
A non-local formulation of rotational water waves
- DOI:10.1017/jfm.2011.404
- 发表时间:2011-12-01
- 期刊:
- 影响因子:3.7
- 作者:Ashton, A. C. L.;Fokas, A. S.
- 通讯作者:Fokas, A. S.
Linearisable nonlinear partial differential equations in multidimensions
多维可线性化非线性偏微分方程
- DOI:10.1063/1.4906366
- 发表时间:2015
- 期刊:
- 影响因子:1.3
- 作者:Dimakos M
- 通讯作者:Dimakos M
Davey-Stewartson type equations in 4+2 and 3+1 possessing soliton solutions
- DOI:10.1063/1.4817345
- 发表时间:2013-08
- 期刊:
- 影响因子:1.3
- 作者:M. Dimakos;A. Fokas
- 通讯作者:M. Dimakos;A. Fokas
The Dirichlet-to-Neumann map for the elliptic sine-Gordon equation
- DOI:10.1088/0951-7715/25/4/1011
- 发表时间:2012-04
- 期刊:
- 影响因子:1.7
- 作者:A. Fokas;B. Pelloni
- 通讯作者:A. Fokas;B. Pelloni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Athanassios Fokas其他文献
Athanassios Fokas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Athanassios Fokas', 18)}}的其他基金
The Unified Transform, Imaging and Asymptotics
统一变换、成像和渐进
- 批准号:
EP/N006593/1 - 财政年份:2015
- 资助金额:
$ 59.28万 - 项目类别:
Fellowship
Integrable Nonlinear Evolution PDEs on the Interval
区间上的可积非线性演化偏微分方程
- 批准号:
EP/H022201/1 - 财政年份:2010
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
Analytical Methods For Certain Inverse Problems In Medical Imaging
医学成像中某些反问题的分析方法
- 批准号:
EP/H051309/1 - 财政年份:2010
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
An Analytical SPECT Image Reconstruction
分析 SPECT 图像重建
- 批准号:
G0802591/1 - 财政年份:2009
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
Aspects of nonlinear evolution PDEs
非线性演化偏微分方程的各个方面
- 批准号:
EP/F034911/1 - 财政年份:2008
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
Mathematical Sciences: Aspects of Integrability
数学科学:可积性方面
- 批准号:
9500311 - 财政年份:1995
- 资助金额:
$ 59.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Aspects of Integrability
数学科学:可积性方面
- 批准号:
9204075 - 财政年份:1992
- 资助金额:
$ 59.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Study of Nonlinear Problems by the IST Method
数学科学:用 IST 方法研究非线性问题
- 批准号:
9111611 - 财政年份:1992
- 资助金额:
$ 59.28万 - 项目类别:
Standard Grant
U.S.-Italy Cooperative Research: Topics in Nonlinear Phenomena
美意合作研究:非线性现象主题
- 批准号:
9015881 - 财政年份:1991
- 资助金额:
$ 59.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Wave Motion
数学科学:非线性波动
- 批准号:
8803471 - 财政年份:1988
- 资助金额:
$ 59.28万 - 项目类别:
Continuing Grant
相似海外基金
Exploring the Nucleosynthesis of Core Collapse Supernovae in Multidimensions
多维度探索核心塌缩超新星的核合成
- 批准号:
0244783 - 财政年份:2003
- 资助金额:
$ 59.28万 - 项目类别:
Continuing Grant














{{item.name}}会员




