The Unified Transform, Imaging and Asymptotics
统一变换、成像和渐进
基本信息
- 批准号:EP/N006593/1
- 负责人:
- 金额:$ 153.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A plethora of physical, chemical, biological and even social processes, can be modelled by mathematical equations. Many of these processes involve continuous change, and then the relevant equations take the form of differential equations. In models containing more than one variable, which is the great majority of situations, the relevant equations are called partial differential equations (PDEs). Given that these equations are instrumental in modelling the world around us, it is crucial that appropriate tools are developed for solving PDEs so that the associated models can be properly analysed. PDEs come into two broad categories: linear and non-linear. A general technique for solving linear PDEs was developed by the great French mathematician Fourier in the early 1800s. Non-linear PDEs are much more difficult to solve analytically. In 1997 the PI introduced a new method for solving a large class of non-linear PDEs. In an unexpected development, these results have motivated the development of a completely new method for solving linear PDEs in two dimensions. This is remarkable, since until then it was thought that the methods developed by Fourier and others in the 18th century could not be improved. This method is reviewed by three authors in the March 2014 issue of the Journal SIAM Review in the article titled "The Method of Fokas for solving linear PDEs", and in an accompanied editorial the importance of this method for solving linear PDEs is compared with the importance of the "Fosbury flop" in the high jump. The first part of this project involves completing the implementation of the above method to some important linear and non-linear problems in two dimensions, and then extending this method from 2 to 3 dimensions.Several medical imaging techniques, including Computed Tomography, Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are based on the solution of a particular class of mathematical problems, called inverse problems. In the second part of this project, new numerical and analytical techniques will be implemented for PET and SPECT.The Riemann function occurs in many different areas of mathematics. Several conjectures related to the Riemann function remain open, including the famous Riemann hypothesis and the Lindeloef hypothesis. The third part of the project involves the analysis of the asymptotics of the Riemann and related functions, which is expected to enhance our understanding of the relevant, most important mathematical structures.
大量的物理、化学、生物甚至社会过程都可以用数学方程来模拟。其中许多过程涉及连续变化,然后相关方程采用微分方程的形式。在大多数情况下,在包含多个变量的模型中,相关方程称为偏微分方程(PDEs)。考虑到这些方程对我们周围的世界建模很有帮助,开发适当的工具来解决偏微分方程是至关重要的,这样相关的模型才能得到适当的分析。偏微分方程分为两大类:线性和非线性。19世纪初,伟大的法国数学家傅立叶提出了求解线性偏微分方程的一般技术。非线性偏微分方程更难解析求解。1997年,PI引入了一种求解大型非线性偏微分方程的新方法。在一个意想不到的发展中,这些结果推动了求解二维线性偏微分方程的全新方法的发展。这是值得注意的,因为在此之前,人们一直认为傅里叶和其他人在18世纪开发的方法无法改进。三位作者在2014年3月的SIAM Review杂志上发表了一篇题为“求解线性偏微分方程的Fokas方法”的文章,对该方法进行了综述,并在一篇随附的社论中将该方法对求解线性偏微分方程的重要性与跳高中的“Fosbury跳高”的重要性进行了比较。本课题的第一部分是完成上述方法在二维上对一些重要的线性和非线性问题的实现,然后将该方法从二维扩展到三维。几种医学成像技术,包括计算机断层扫描,正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)是基于解决一类特殊的数学问题,称为逆问题。在该项目的第二部分,新的数值和分析技术将用于PET和SPECT。黎曼函数出现在许多不同的数学领域。与黎曼函数有关的几个猜想仍然是开放的,包括著名的黎曼假设和林德洛夫假设。该项目的第三部分涉及黎曼和相关函数的渐近性分析,这有望提高我们对相关的,最重要的数学结构的理解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Unified Transform: A Spectral Collocation Method for Acoustic Scattering
统一变换:声散射的光谱搭配方法
- DOI:10.2514/6.2019-2528
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ayton L
- 通讯作者:Ayton L
Fokas method for linear boundary value problems involving mixed spatial derivatives.
Fokas 方法用于解决涉及混合空间导数的线性边值问题。
- DOI:10.1098/rspa.2020.0076
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Batal A
- 通讯作者:Batal A
Integral representations for the double-diffusivity system on the half-line
- DOI:10.1007/s00033-023-02174-8
- 发表时间:2024-04-01
- 期刊:
- 影响因子:2
- 作者:Chatziafratis,Andreas;Aifantis,Elias C.;Fokas,Athanassios S.
- 通讯作者:Fokas,Athanassios S.
A HYBRID ANALYTICAL-NUMERICAL TECHNIQUE FOR ELLIPTIC PDES
- DOI:10.1137/18m1217309
- 发表时间:2019-01-01
- 期刊:
- 影响因子:3.1
- 作者:Colbrook, Matthew J.;Fokas, Thanasis S.;Hashemzadeh, Parham
- 通讯作者:Hashemzadeh, Parham
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Athanassios Fokas其他文献
Athanassios Fokas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Athanassios Fokas', 18)}}的其他基金
Integrability in Multidimensions and Boundary Value Problems
多维可积性和边值问题
- 批准号:
EP/H04261X/1 - 财政年份:2011
- 资助金额:
$ 153.78万 - 项目类别:
Research Grant
Integrable Nonlinear Evolution PDEs on the Interval
区间上的可积非线性演化偏微分方程
- 批准号:
EP/H022201/1 - 财政年份:2010
- 资助金额:
$ 153.78万 - 项目类别:
Research Grant
Analytical Methods For Certain Inverse Problems In Medical Imaging
医学成像中某些反问题的分析方法
- 批准号:
EP/H051309/1 - 财政年份:2010
- 资助金额:
$ 153.78万 - 项目类别:
Research Grant
An Analytical SPECT Image Reconstruction
分析 SPECT 图像重建
- 批准号:
G0802591/1 - 财政年份:2009
- 资助金额:
$ 153.78万 - 项目类别:
Research Grant
Aspects of nonlinear evolution PDEs
非线性演化偏微分方程的各个方面
- 批准号:
EP/F034911/1 - 财政年份:2008
- 资助金额:
$ 153.78万 - 项目类别:
Research Grant
Mathematical Sciences: Aspects of Integrability
数学科学:可积性方面
- 批准号:
9500311 - 财政年份:1995
- 资助金额:
$ 153.78万 - 项目类别:
Standard Grant
Mathematical Sciences: Aspects of Integrability
数学科学:可积性方面
- 批准号:
9204075 - 财政年份:1992
- 资助金额:
$ 153.78万 - 项目类别:
Standard Grant
Mathematical Sciences: Study of Nonlinear Problems by the IST Method
数学科学:用 IST 方法研究非线性问题
- 批准号:
9111611 - 财政年份:1992
- 资助金额:
$ 153.78万 - 项目类别:
Standard Grant
U.S.-Italy Cooperative Research: Topics in Nonlinear Phenomena
美意合作研究:非线性现象主题
- 批准号:
9015881 - 财政年份:1991
- 资助金额:
$ 153.78万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Wave Motion
数学科学:非线性波动
- 批准号:
8803471 - 财政年份:1988
- 资助金额:
$ 153.78万 - 项目类别:
Continuing Grant
相似国自然基金
视觉智能Shapelet Transform驱动的SHM数据关联分析与域自适应迁移机制深度学习
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SIGNALS and SITELLE: Massive stars and HII regions in nearby galaxies with imaging Fourier transform spectroscopy
信号和站点:通过成像傅里叶变换光谱分析附近星系中的大质量恒星和 HII 区域
- 批准号:
RGPIN-2019-05840 - 财政年份:2022
- 资助金额:
$ 153.78万 - 项目类别:
Discovery Grants Program - Individual
Infrared Skin Imaging to Transform Noninvasive Diagnosis and Management of Skin Disease
红外皮肤成像改变皮肤病的无创诊断和治疗
- 批准号:
10254984 - 财政年份:2021
- 资助金额:
$ 153.78万 - 项目类别:
SIGNALS and SITELLE: Massive stars and HII regions in nearby galaxies with imaging Fourier transform spectroscopy
信号和站点:通过成像傅里叶变换光谱分析附近星系中的大质量恒星和 HII 区域
- 批准号:
RGPIN-2019-05840 - 财政年份:2021
- 资助金额:
$ 153.78万 - 项目类别:
Discovery Grants Program - Individual
AI-enhanced Hyperspectral Imaging to Transform Neurosurgery
人工智能增强高光谱成像改变神经外科
- 批准号:
2577520 - 财政年份:2021
- 资助金额:
$ 153.78万 - 项目类别:
Studentship
Infrared Skin Imaging to Transform Noninvasive Diagnosis and Management of Skin Disease
红外皮肤成像改变皮肤病的无创诊断和治疗
- 批准号:
10488631 - 财政年份:2021
- 资助金额:
$ 153.78万 - 项目类别:
SIGNALS and SITELLE: Massive stars and HII regions in nearby galaxies with imaging Fourier transform spectroscopy
信号和站点:通过成像傅里叶变换光谱分析附近星系中的大质量恒星和 HII 区域
- 批准号:
RGPIN-2019-05840 - 财政年份:2020
- 资助金额:
$ 153.78万 - 项目类别:
Discovery Grants Program - Individual
A new technology to transform cardiac risk management by imaging coronary artery inflammation
通过冠状动脉炎症成像来改变心脏风险管理的新技术
- 批准号:
73382 - 财政年份:2020
- 资助金额:
$ 153.78万 - 项目类别:
Feasibility Studies
Developing Photonics Solutions to Transform Metabolic Brain Imaging in Neonates and Toddlers at Risk of Cerebral Palsy and/or Cognitive Disorders
开发光子解决方案以改变有脑瘫和/或认知障碍风险的新生儿和幼儿的代谢脑成像
- 批准号:
2405212 - 财政年份:2020
- 资助金额:
$ 153.78万 - 项目类别:
Studentship
SIGNALS and SITELLE: Massive stars and HII regions in nearby galaxies with imaging Fourier transform spectroscopy
信号和站点:通过成像傅里叶变换光谱分析附近星系中的大质量恒星和 HII 区域
- 批准号:
RGPIN-2019-05840 - 财政年份:2019
- 资助金额:
$ 153.78万 - 项目类别:
Discovery Grants Program - Individual
Focal Plane Array-Fourier Transform Infrared and Quantum Cascade Laser imaging of edible films and microparticles for active packaging and targeted-delivery applications
焦平面阵列-傅里叶变换红外和量子级联激光成像可食用薄膜和微粒,用于主动包装和靶向递送应用
- 批准号:
504820-2017 - 财政年份:2019
- 资助金额:
$ 153.78万 - 项目类别:
Postgraduate Scholarships - Doctoral