Nano-Integration of Metal-Organic Frameworks and Catalysis for the Uptake and Utilisation of CO2
金属有机框架的纳米集成和二氧化碳吸收和利用的催化作用
基本信息
- 批准号:EP/H046305/1
- 负责人:
- 金额:$ 151.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Carbon dioxide levels have risen steadily with the combustion of fossil fuels and additional positive feedback effects due to natural CO2 sources. Recycling of CO2 driven by solar/renewable energy is an effective approach to address the problem. In a recent edition of Science (25th Sept 2009) entirely dedicated to this problem the opportunities and potential benefits arising form CO2 uptake from the open air (as opposed to capture during production) have been highlighted. The urgent need for capture and utilisation of CO2 is self-evident. Research in CO2 capture and in CO2 utilisation is currently based on a range of separate technologies and often ineffective e.g. for amine or alkaline sequestration. By combining ( nano-integrating ) capture and utilisation into a single continuous process the efficiency can be improved and at the same time the energy required to drive CO2 reduction is minimised. This project focuses on one-step CO2 capture and utilisation by linking catalysts directly with a novel CO2 absorber. Nano-scale-integration of CO2 uptake and utilisation processes will provide new highly efficient single-step processes to turn CO2 into useful products (polymers, carbohydrates, fuels). The main vision for this project is the idea of a catalyst nanostructure embedded into/immobilised onto a CO2 supplying membrane (Metal-Organic-Framework, MOF) substrate so that enhanced localised diffusion can deliver a high rate of CO2 into the active catalyst site.Metal Organic Frameworks (MOFs) have emerged as a front-runner for the uptake and storage of CO2 but have never been employed to support catalysts. Effective catalysts for the conversion of CO2 into useful chemical products have been discovered but usually require high concentration industrial CO2. In this project two areas of existing strength in the South-West, CO2 absorption and catalytic utilisation, are combined to provide new nano-structured functional catalyst membranes tailored to both capture and concentrate CO2 from the free atmosphere and convert it into useful products in a single continuous process. The developed technology based on functionalised and specifically tailored MOF-membranes will be entirely new. The catalytic processes will be driven by solar energy (photo- or bio-catalysis), renewable energy, or waste heat from carbon creating processes. Nanotechnology is integral to this project. Metal organic frameworks (MOFs) are promising materials for the specific absorption and storage of high concentrations of CO2. In a new approach the MOFs will be made into nanostructured membranes, which will concentrate CO2 from the atmosphere and feed it directly into a nanostructured catalyst layer. As the CO2 is reduced, fresh CO2 will be continuously drawn in with the catalyst located in the diffusion layer (with effective hemi-spherical diffusion of CO2 to the nano-catalyst). Three types of catalysis will be investigated for CO2 reduction: (i) direct gas phase reduction of CO2 to CO using a nanostructured catalyst and integrated MOF/catalyst materials for one step carbon capture and utilisation, (ii) CO2 will be electro-reduced on platinum or copper nanoparticles (or similar nano-structured catalysts) to form ethylene and higher hydrocarbons with nanostructured catalysts increasing the selectivity of process, (iii) bio-films of cyanobacteria will be used to fix CO2 from the MOF under illumination in a MFC setup. Nanostructuring of the conducting MOF surface with the biofilm attached is extremely important for good bacterial adhesion and function.Stages of effective modules (e.g. producing ethylene and producing CO) will be combined into reactors to deliver products of higher value (e.g. polymers, solvents, or fuels) in the second stage of the project. Parts and the overall process will be carefully assessed by life-cycle analysis and the desired end product will be a carbon negative process .
随着化石燃料的燃烧和天然CO2源产生的额外正反馈效应,二氧化碳水平稳步上升。太阳能/可再生能源驱动的CO2回收利用是解决这一问题的有效途径。在最近一期的《科学》(2009年9月25日)中,完全致力于这个问题,强调了从露天吸收二氧化碳(而不是在生产过程中捕获)所带来的机会和潜在利益。对二氧化碳的捕获和利用的迫切需要是不言而喻的。二氧化碳捕获和二氧化碳利用的研究目前基于一系列单独的技术,并且通常无效,例如胺或碱螯合。通过将(纳米集成)捕获和利用结合到一个连续的过程中,可以提高效率,同时将减少二氧化碳所需的能量降至最低。该项目的重点是通过将催化剂直接与新型CO2吸收剂连接来实现一步CO2捕获和利用。二氧化碳吸收和利用过程的纳米级集成将提供新的高效单步过程,将二氧化碳转化为有用的产品(聚合物,碳水化合物,燃料)。该项目的主要设想是将催化剂纳米结构嵌入/固定在CO2供应膜(金属有机框架,MOF)基底上,以便增强局部扩散可以将高速率的CO2输送到活性催化剂位点。金属有机框架(MOF)已成为吸收和储存CO2的领跑者,但从未用于支撑催化剂。已经发现了用于将CO2转化为有用的化学产品的有效催化剂,但通常需要高浓度的工业CO2。在该项目中,西南部现有的两个优势领域,CO2吸收和催化利用,结合起来,提供新的纳米结构功能催化剂膜,用于从自由大气中捕获和浓缩CO2,并在一个连续的过程中将其转化为有用的产品。基于功能化和专门定制的MOF膜开发的技术将是全新的。催化过程将由太阳能(光催化或生物催化)、可再生能源或碳生成过程的废热驱动。纳米技术是这个项目的组成部分。金属有机骨架(MOFs)是一种很有前途的高浓度CO2吸收和储存材料。在一种新的方法中,MOFs将被制成纳米结构的膜,它将从大气中浓缩CO2,并将其直接送入纳米结构的催化剂层。随着CO2被还原,新鲜CO2将被位于扩散层中的催化剂连续吸入(CO2有效地半球形扩散到纳米催化剂)。将研究三种类型的催化剂用于CO2还原:(i)使用纳米结构催化剂和集成的MOF/催化剂材料将CO2直接气相还原为CO,用于一步碳捕获和利用,(ii)CO2将在铂或铜纳米颗粒上电还原(或类似的纳米结构催化剂)形成乙烯和高级烃,其中纳米结构催化剂提高了工艺的选择性,(iii)蓝细菌的生物膜将用于在MFC装置中在照明下固定来自MOF的CO2。具有附着生物膜的导电MOF表面的纳米结构化对于良好的细菌粘附和功能极其重要。有效模块的阶段(例如生产乙烯和生产CO)将被组合成反应器,以在项目的第二阶段提供更高价值的产品(例如聚合物,溶剂或燃料)。将通过生命周期分析仔细评估部件和整个过程,所需的最终产品将是碳负过程。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nano-TiO2-flavin adenine dinucleotide film redox processes in contact to humidified gas | salt electrolyte
纳米TiO2-黄素腺嘌呤二核苷酸薄膜与加湿气体接触的氧化还原过程
- DOI:10.1016/j.bioelechem.2012.01.010
- 发表时间:2012
- 期刊:
- 影响因子:5
- 作者:Halls J
- 通讯作者:Halls J
Methanol Oxidation at Diamond-Supported Pt Nanoparticles: Effect of the Diamond Surface Termination
金刚石负载的 Pt 纳米粒子的甲醇氧化:金刚石表面终止的影响
- DOI:10.1021/jp4039804
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Celorrio V
- 通讯作者:Celorrio V
Electrochemical performance of Pd and Au-Pd core-shell nanoparticles on surface tailored carbon black as catalyst support
- DOI:10.1016/j.ijhydene.2011.12.014
- 发表时间:2012-04-01
- 期刊:
- 影响因子:7.2
- 作者:Celorrio, V.;Montes de Oca, M. G.;Lazaro, M. J.
- 通讯作者:Lazaro, M. J.
Proton uptake vs. redox driven release from metal-organic-frameworks: Alizarin red S reactivity in UMCM-1
- DOI:10.1016/j.jelechem.2012.11.016
- 发表时间:2013-01-15
- 期刊:
- 影响因子:4.5
- 作者:Halls, Jonathan E.;Ahn, Sunyhik D.;Marken, Frank
- 通讯作者:Marken, Frank
Redox Reactivity of Methylene Blue Bound in Pores of UMCM-1 Metal-Organic Frameworks
UMCM-1 金属有机框架孔中亚甲基蓝的氧化还原反应性
- DOI:10.1080/15421406.2012.632738
- 发表时间:2012
- 期刊:
- 影响因子:0.7
- 作者:Halls J
- 通讯作者:Halls J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Marken其他文献
Photo-potentiometry: Sensing of sugars using a pH-probe coated with a film of intrinsically microporous polyamine containing graphitic carbon nitride photocatalyst
光电位法:使用涂有含石墨碳氮化物光催化剂的本征微孔聚胺膜的 pH 探针检测糖
- DOI:
10.1016/j.talanta.2025.128461 - 发表时间:
2026-01-01 - 期刊:
- 影响因子:6.100
- 作者:
Fernanda C.O.L. Martins;Wanessa R. Melchert;Mariolino Carta;Neil B. McKeown;Frank Marken - 通讯作者:
Frank Marken
Impact of stirring regime on piezocatalytic dye degradation using BaTiOsub3/sub nanoparticles
搅拌制度对使用钛酸钡纳米粒子进行压电催化染料降解的影响
- DOI:
10.1016/j.nanoen.2023.108794 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:17.100
- 作者:
Guru Prasanna;Hoang-Duy P. Nguyen;Steve Dunn;Akalya Karunakaran;Frank Marken;Chris R. Bowen;Bao-Ngoc T. Le;Hoang-Duy Nguyen;Thuy-Phuong T. Pham - 通讯作者:
Thuy-Phuong T. Pham
Microwave-electrochemical formation of colloidal zinc oxide at fluorine doped tin oxide electrodes
- DOI:
10.1016/j.electacta.2010.01.068 - 发表时间:
2010-11-30 - 期刊:
- 影响因子:
- 作者:
Liza Rassaei;Robben Jaber;Stephen E. Flower;Karen J. Edler;Richard G. Compton;Tony D. James;Frank Marken - 通讯作者:
Frank Marken
Paper supports in electrocatalysis : Weak contact catalysis with seed-mediated grown gold nanoparticle deposits
电催化中的纸支撑:种子介导生长的金纳米颗粒沉积物的弱接触催化
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Munetaka Oyama;Daisuke Nakashima;Charles Y.Cummings;Frank Marken - 通讯作者:
Frank Marken
Nanophase-photocatalysis: loading, storing, and release of Hsub2/subOsub2/sub using graphitic carbon nitride
纳米相光催化:使用石墨氮化碳负载、储存和释放过氧化氢
- DOI:
10.1039/d3cc01442h - 发表时间:
2023-01-01 - 期刊:
- 影响因子:4.200
- 作者:
Akalya Karunakaran;Katie J. Francis;Chris R. Bowen;Richard J. Ball;Yuanzhu Zhao;Lina Wang;Neil B. McKeown;Mariolino Carta;Philip J. Fletcher;Remi Castaing;Mark A. Isaacs;Laurence J. Hardwick;Gema Cabello;Igor V. Sazanovich;Frank Marken - 通讯作者:
Frank Marken
Frank Marken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Marken', 18)}}的其他基金
Nanogap Electrochemistry and Sensor Technology at the Molecular Limit
分子极限的纳米间隙电化学和传感器技术
- 批准号:
EP/I028706/1 - 财政年份:2011
- 资助金额:
$ 151.3万 - 项目类别:
Research Grant
Microwave-Induced Nanoscale Convection, Polarisation, and Thermal Effects Leading to Innovative Analytical Technology
微波引发的纳米级对流、极化和热效应带来创新的分析技术
- 批准号:
EP/F025726/1 - 财政年份:2008
- 资助金额:
$ 151.3万 - 项目类别:
Research Grant
Microphase Photo-Electrochemistry: Light Driven Liquid-Liquid Ion Transfer Processes and Two-Phase Micro-Photovoltaic Systems
微相光电化学:光驱动液-液离子转移过程和两相微光伏系统
- 批准号:
EP/G002614/1 - 财政年份:2008
- 资助金额:
$ 151.3万 - 项目类别:
Research Grant
相似海外基金
Growth and integration of phase change metal-chalcogenide semiconductors into optical fiber and waveguide integrated nanophotonic metamaterial modulators
相变金属硫族化物半导体的生长和集成到光纤和波导集成纳米光子超材料调制器中
- 批准号:
561145-2020 - 财政年份:2021
- 资助金额:
$ 151.3万 - 项目类别:
Alliance Grants
Integration of Metal Clusters on Fullerenes and Their Application to Highly Difficult Molecular Transformation
富勒烯上金属簇的整合及其在高难度分子转化中的应用
- 批准号:
20K15300 - 财政年份:2020
- 资助金额:
$ 151.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Growth and integration of phase change metal-chalcogenide semiconductors into optical fiber and waveguide integrated nanophotonic metamaterial modulators
相变金属硫族化物半导体的生长和集成到光纤和波导集成纳米光子超材料调制器中
- 批准号:
561145-2020 - 财政年份:2020
- 资助金额:
$ 151.3万 - 项目类别:
Alliance Grants
Surface Functionalization and Materials Integration of Metal-organic Polyhedra
金属有机多面体的表面功能化与材料集成
- 批准号:
20K22554 - 财政年份:2020
- 资助金额:
$ 151.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The integration of non-heavy metal containing quantum dots into solar cell encapsulants for photo-voltaic efficiency enhancement
将不含重金属的量子点集成到太阳能电池封装材料中以提高光伏效率
- 批准号:
519373-2018 - 财政年份:2019
- 资助金额:
$ 151.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
Extension of the process limits by integration of oscillation tool into an industry-oriented sheet-bulk metal forming process (T05)
通过将振荡工具集成到面向工业的板材散装金属成型工艺中来扩展工艺限制 (T05)
- 批准号:
417860324 - 财政年份:2019
- 资助金额:
$ 151.3万 - 项目类别:
CRC/Transregios (Transfer Project)
Mass production of metal oxide nanoparticles and their integration into polymer coatings
金属氧化物纳米颗粒的大规模生产及其与聚合物涂层的集成
- 批准号:
493859-2016 - 财政年份:2018
- 资助金额:
$ 151.3万 - 项目类别:
Strategic Projects - Group
The integration of non-heavy metal containing quantum dots into solar cell encapsulants for photo-voltaic efficiency enhancement
将不含重金属的量子点集成到太阳能电池封装材料中以提高光伏效率
- 批准号:
519373-2018 - 财政年份:2018
- 资助金额:
$ 151.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
New Materials Fabricated by Nano-Scale Dimensional Integration of Finely Constructed Multinuclear Metal Systems
通过精细结构的多核金属系统的纳米级尺寸集成制造的新材料
- 批准号:
18H03914 - 财政年份:2018
- 资助金额:
$ 151.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Integration of functional elements in sheet metal components through deep-drawn double blanks
通过深拉双毛坯将功能元件集成到钣金部件中
- 批准号:
362037730 - 财政年份:2017
- 资助金额:
$ 151.3万 - 项目类别:
Research Grants