Stability conditions and hypermultiplet space
稳定性条件和超多重空间
基本信息
- 批准号:EP/I003371/1
- 负责人:
- 金额:$ 32.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many modern physical theories such as string theory are geometrical in nature,with the properties of particles and forces being determined by the way extradimensions in the theory are curled up on themselves. Unfortunately stringtheory is not at all well-understood at present, and it has not so far beenpossible to make predictions that can be experimentally verified. This projectfits into a large area of current research in pure mathematics which aims at abetter understanding the mathematcal structure of string theory. One could hopethat this will one day enable us to make calculations of real world quantitiesthat can then be checked against experiment. For now though it is early days,and our research focuses on properties of the curled up dimensions appearing instring theory, known in mathematics as Calabi-Yau manifolds.This particular proposal concerns certain algebraic objects appearing in string theorywhich physicists call categories of BPS branes, and mathematicians call Calabi-Yaucategories. We will be concerned with integers called Donaldson-Thomas invariantswhich measure the precise number of BPS branes appearing in the theory. Theultimate aim is to better understand an object called the hypermultiplet space,an auxilliary space appearing in string theory but which has no mathematicaldefinition at present. The physics suggests that this space can be equipped witha geometrical structure which encodes the Donaldson-Thomas invariants in aninteresting way. This geometrical structure is called a hyperkahler metric andexamples of such structures are of interest in both mathematics and theoretical physics.
许多现代物理理论,如弦论,本质上都是几何的,粒子和力的性质取决于理论中额外维度的卷曲方式。不幸的是,弦理论目前还没有被很好地理解,到目前为止还不可能做出可以被实验验证的预言。这个项目适合于当前纯数学研究的一个大领域,其目的是更好地理解弦理论的几何结构。人们可以断言,这将使我们有一天能够对真实的世界的量进行计算,然后用实验进行检验。虽然现在还处于早期阶段,我们的研究主要集中在弦理论中出现的卷曲维度的性质上,在数学中被称为Calabi-Yau流形。这个特别的提议涉及到弦理论中出现的某些代数对象,物理学家称之为BPS膜范畴,数学家称之为Calabi-Yaucategories。我们将关注称为唐纳森-托马斯不变量的整数,它测量理论中出现的BPS膜的精确数量。最终目的是更好地理解一个叫做超多重态空间的对象,它是弦理论中出现的一个辅助空间,但目前还没有专业的定义。物理学表明,这个空间可以配备一个几何结构,以一种有趣的方式编码唐纳森-托马斯不变量。这种几何结构被称为超卡勒度规,这种结构的例子在数学和理论物理中都很有意义。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability conditions and the A2 quiver
- DOI:10.1016/j.aim.2020.107049
- 发表时间:2014-06
- 期刊:
- 影响因子:1.7
- 作者:T. Bridgeland;Y. Qiu;T. Sutherland
- 通讯作者:T. Bridgeland;Y. Qiu;T. Sutherland
QUADRATIC DIFFERENTIALS AS STABILITY CONDITIONS
- DOI:10.1007/s10240-014-0066-5
- 发表时间:2015-06-01
- 期刊:
- 影响因子:6.2
- 作者:Bridgeland, Tom;Smith, Ivan
- 通讯作者:Smith, Ivan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Bridgeland其他文献
Thomas Bridgeland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Bridgeland', 18)}}的其他基金
Geometry from Donaldson-Thomas invariants
唐纳森-托马斯不变量的几何
- 批准号:
EP/V010719/1 - 财政年份:2022
- 资助金额:
$ 32.13万 - 项目类别:
Research Grant
Stability conditions and hypermultiplet space
稳定性条件和超多重空间
- 批准号:
EP/I003371/2 - 财政年份:2014
- 资助金额:
$ 32.13万 - 项目类别:
Research Grant
相似国自然基金
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
How will Emperor Penguins Respond to Changing Ice Conditions (EPIC)?
帝企鹅将如何应对不断变化的冰况(EPIC)?
- 批准号:
NE/Y00115X/1 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Research Grant
Electrical conductivity measurements of silicate melts at the Earth's mantle conditions
地幔条件下硅酸盐熔体的电导率测量
- 批准号:
24K17146 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
- 批准号:
DP240101500 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Discovery Projects
Care and Repair: Rethinking Contemporary Curation for Conditions of Crisis
护理与修复:重新思考危机条件下的当代策展
- 批准号:
DP240102206 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Discovery Projects
Understanding and treating neurogenetic conditions related to the Kennedy pathway
了解和治疗与肯尼迪通路相关的神经遗传疾病
- 批准号:
MR/Y014251/1 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Research Grant
Storming Immune Monogenic Conditions through Multiomic and Gene Editing Approaches
通过多组学和基因编辑方法攻克免疫单基因条件
- 批准号:
EP/Y032500/1 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Research Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
- 批准号:
2338313 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
Elucidating molecular mechanisms of the water-induced swallowing reflex under non-thirsty and thirsty conditions: the importance of TRPV4
阐明非口渴和口渴条件下水诱导吞咽反射的分子机制:TRPV4的重要性
- 批准号:
24K12880 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fatigue Life Assessment of Structures under Realistic Loading Conditions
实际载荷条件下结构的疲劳寿命评估
- 批准号:
DP240103201 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Discovery Projects














{{item.name}}会员




